TRAFFIC IMPACT ANALYSIS

FOR

PROPOSED QUICK CHEK

U.S. Route 130 and Washington Place
Block 230, LOT 15
Township of North Brunswick
Middlesex County, New Jersey

NoVEmber 7, 2019

A site plan application is being filed with the Township of North Brunswick for a 5,670 square foot Quick Chek market with 8 fuel pumps. The site is in the southwestern corner of the intersection formed by Route 130 and Nimitz Place and is currently undeveloped.

Access to the new Quick Chek is proposed via two driveways along Route 130 where the western most driveway will provide access to the existing traffic signal located at the intersection of Route 130 and Washington Place. The second highway driveway would be limited to right turn ingress/egress as Route 130 is a divided highway. Alternative ingress is also proposed via a right-turn only driveway along Nimitz Place. No egress is proposed to Nimitz Place.

Dolan \& Dean Consulting Engineers, LLC (D\&D) has been retained by the applicant to prepare this Traffic Impact Analysis for the proposed Quick Chek. This report provides an assessment of the existing roadways and intersection operations near to the site, a projection of future traffic volumes inclusive of site generated traffic, and an assessment of future driveway and intersection conditions. In addition, this report provides a review of the proposed site access, on-site circulation design, and parking supply.

Existing Conditions

As noted, the subject property is located in the southwestern corner of the intersection formed by Route 130 and Nimitz Place. The site is designated as Block 230, Lot 15 and is shown on appended Figure 1.

EXISTING ROADWAY CONDITIONS

U.S. Route 130 is considered an urban accessible principal arterial roadway and is under NJDOT jurisdiction. The roadway has a general northeast/southwest orientation, and within the general site vicinity provides two lanes of travel in each direction with a posted speed limit of 50 miles per hour and is divided by a grassed median with intermediate openings at select intersections.

Nimitz Place intersects Route 130 from the north at a STOP controlled, 3-leg intersection. The roadway provides one lane of travel in each direction, with a nonposted statutory speed limit of 25 miles per hour. Nimitz Place provides access to single family residential homes located northwest of the site.

Washington Place is a local roadway with a general northwest/southeast orientation. The Roadway provides one lane of travel in each direction with a posted speed limit of 25 miles per hour. Washington Place intersects Route 130 at a signalized "T"-Type intersection that aligns opposite the proposed Quick Chek driveways. There is a 4-ton truck weight limited on Washington Place.

At the signalized intersection of Washington Place \& Route 130, the northbound Route 130 approach to the intersection provides an exclusive through lane and a shared through/right-turn lane within the median. The southbound approach was recently widened to provide an exclusive left-turn lane, an exclusive
 through lane and a shared through/right-turn lane. The westbound Washington Place approach provides an exclusive left-turn lane and an exclusive right-turn lane.

EXISTING TRAFFIC VOLUMES

In 2019, $\mathrm{D} \& \mathrm{D}$ performed traffic counts at the Route 130 intersection with Nimitz Place and Washington Place during those times when the highway traffic is typically busiest. The counts were conducted during peak traffic hours on Thursday, July 11, 2019 from 7:00 a.m. to 9:00 a.m. and from 4:00 p.m. to 6:30 p.m. The existing peak hour volumes were then balanced between intersections and are shown on appended Figure 2.

ANALYSIS OF EXISTING TRAFFIC CONDITIONS

A volume/capacity Level of Service analysis was conducted for the existing traffic volumes using the Highway Capacity Manual (HCM) computer software. This type of analysis is performed to assess intersection operations and to identify any areas of excessive delay.

By definition, capacity represents the maximum vehicular volume that can be accommodated on a given road segment or intersection lane as a function of roadway geometry, the general environs, traffic characteristics, regulations and controls. Intersections are usually the critical point in any road network since it is at such points that conflicts exist between through, crossing, and turning traffic. It is at these locations where congestion is most likely to occur.

Based on this analysis, and as shown in Figure 3, all movements at the study intersections currently operate at Levels of Service "D" or better during both peak hours. A description of intersection Levels of Service is noted below:

Signalized Intersections	
Level of Service	Delay per Vehicle (seconds)
A	<10.0
B	>10.0 and <20.0
C	>20.0 and <35.0
D	>35.0 and <55.0
E	>55.0 and <80.0
F	>80.0

Unsignalized (STOP/YIELD) Intersections	
Level of Service	Delay per Vehicle (seconds)
A	$<0-10$
B	>10 to <15
C	>15 to <25
D	>25 to <35
E	>35 to <50
F	>50

Traffic Characteristics of the Proposed Use

TRIP GENERATION

Trip generation estimates for the Quick Chek were developed using the $10^{\text {th }}$ Edition of the Trip Generation Manual by the Institute of Transportation Engineers (ITE). For the proposed Quick Chek the proper land use category is "Super Convenience Store with Gas Pumps". Table I summarizes the Quick Chek trip generation projections.

Table I
Trip Generation Estimates - 5,670 SF Quick Chek
ITE Rates

PEAK HOUR	ENTER	EXIT	TOTAL
Morning	236	236	472
Evening	197	197	394

As noted in the ITE Trip Generation Handbook, certain uses such as convenience stores, restaurants, banks, gas stations, etc., are ideally located adjacent to busy streets in order to attract existing motorists. These uses generally attract most of their customers from traffic passing the site on the way from an origin to an ultimate destination. These trips are therefore not new to the adjacent street system but are considered "pass-by" trips. Pass-by trips are defined as: "..trips attracted to a particular development from the traffic "passingby" on the adjacent street."

Based on a 2001 ITE study, peak hour pass-by percentages of 80% would be reasonably anticipated during the morning and evening peak hours, respectively. Research performed by this firm and others at convenience stores, gas stations, and combination gas/store sites, indicate pass-by percentages well in excess of 80% as rarely does a customer make a specific trip to a convenience store or service station during peak hours. However, to allow for a conservative analysis, NJDOT's percentages for "pass-by" distribution shown below were used:

Morning Peak Hour - 75\%
Evening Peak Hour - 75\%

The following table summarizes trip generation by trip type:
Table II
Trip Generation By Type

Peak Hour	Trip Type	ITE RATES		
		Quick Chek - New	ENTER	EXIT
	Quick Chek - Pass By	$\underline{177}$	59	TOTAL
	Total	$\underline{236}$	$\underline{177}$	118
	Quick Chek - New	49	$\underline{354}$	
Evening	Quick Chek - Pass By	$\underline{148}$	49	98
	Total	$\underline{197}$	$\underline{148}$	$\underline{296}$
				394

DISTRIBUTION OF SITE GENERATED TRAFFIC

The majority of site traffic will be influenced by the likely attraction of pass-by traffic as previously discussed. Particularly during peak hours, many site visits will be linked to another primary trip purpose, for example, traveling to work, returning home from work or a combined trip with other shopping related errands.
"New" trips are likely to follow existing travel patterns. The distribution of newly generated trips is shown in Table III.

Table III
Distribution

To/From	Percentage
North - Route 130	40%
South - Route 130	40%
East - Washington Place	18%
West - Nimitz Place	2%

Site generated traffic is shown on Figure 4.

FUTURE TRAFFIC CONDITIONS

FUTURE TRAFFIC VOLUMES

For the purposes of this analysis, a two-year build-out has been assumed. To project traffic volumes to the design year, a background growth factor was applied to existing traffic volumes. Based on data compiled by NJDOT, the typical growth rate for Middlesex County principal arterial highways is 1.00% per year. The background growth was implemented for a projected two-year buildout to create the "no-build" volumes shown in Figure 5.

Projected site traffic from the proposed Quick Chek was then added to the "no-build" traffic volumes to establish future "build" traffic volumes. These future build traffic volumes are shown on Figure 6.

ANALYSIS OF FUTURE TRAFFIC CONDITIONS

The projected "no-build" and "build" traffic volumes were analyzed to determine future operational conditions at the study intersection under build conditions. Driveway movements at the signalized Route 130 and Washington Place intersection were analyzed with the proposed lane configuration of a shared through/left-turn lane, and an exclusive right-turn only lane for Quick Chek. Figures 7 and 8 illustrate the resultant "no-build" and "build" levels of service.

As shown under build conditions, all movements will continue to operate at a level of service "D" or better during both peak hours. Therefore, new traffic generated by the proposed Quick Chek will not have a negative effect on roadway operating conditions.

SITE ACCESS AND CIRCULATION

The Site Plans prepared by Bohler Engineering, LLC has been reviewed with regard to site access, circulation, and parking supply and orientation. The following comments address the overall site circulation for vehicular traffic:
> Site access is proposed via a right-in/right-out driveway and a signalized, full-movement driveway location along Route 130. Alternative ingress to serve the adjacent neighborhood is proposed via a right-turn, in-only driveway along Nimitz Place. The benefit of this driveway would allow local residents to enter the site without having to exit onto Route 130 and then immediately turn into the site, thereby making for a much safer ingress.
> 8 fuel dispensers, allowing for 16 fueling positions, are proposed. The provision of multiple fueling positions results in a more efficient operation, allowing vehicles to enter the site and readily access a fueling position which accommodate their gas tank location. By providing multiple fueling positions, vehicular queuing typically does not occur.
> The Site Plan provides 67 striped parking spaces on site for multi-purpose gas/mart customers. The 16 fueling positions will act as de facto parking. The combination of a mart or convenience store and fueling stations is customary, in that store purchases can be made while vehicles are being fueled. The provision of 83 parking positions on-site is expected to more than adequately accommodate parking demands.
> The site layout provides for two-way circulation around the building, around the fueling area, and between parking spaces. The site design will accommodate passenger vehicles, delivery vehicles, and refuse trucks.

TECHNICAL APPENDIX

Proposed Quick Chek
Township of North Brunswick
FIGURE I Middlesex County, New Jersey

Proposed Quick Chek
Township of North Brunswick
FIGURE 2 Middlesex County, New Jersey

Proposed Quick Chek
Township of North Brunswick
FIGURE 3
Middlesex County, New Jersey

PRoposed Quick Chek
Township of North Brunswick
FIGURE 4 Middlesex County, New Jersey

Proposed Quick Chek
Township of North Brunswick
FIGURE 5
Middlesex County, New Jersey

		Morning Peak 7:00 A.M. то 8:	Rt. 130 HOUR A.M.
			RT 130
- = Existing Roadway -- = Proposed Driveway		Evening Peak Hour 4:45 P.M. TO 5:45 P.M.	

Proposed Quick Chek
Township of North Brunswick
FIGURE 6 Middlesex County, New Jersey

Morning Peak Hour 7:00 A.M. TO 8:00 A.M.	

Proposed Quick Chek
Township of North Brunswick
FIGURE 7 Middlesex County, New Jersey

PRoposed Quick Chek
Township of North Brunswick
FIGURE 8
Middlesex County, New Jersey
Route 130 \& Washington place/Nimitz Place
Thursday, July 11, 2019 from 7:00 to 9:00 am \& from 4:00 to 6:30 pm

$\mathrm{PHF}=$
$\mathrm{HV} \%=$

HCS7 Two-Way Stop-Control Report

Vehicle Volumes and Adjustments

HCS7 Signalized Intersection Results Summary

HCS7 Two－Way Stop－Control Report

General informations		Sitelnformatione	
Analyst	EIC	Intersection	Nimitz \＆Rt． 130
Agenoyco．	DD	Turiscition 1	
Date Performed	7／19／2019	East／West Street	Route 130
Analysis Year ${ }^{\text {a }}$	2019	North／South street	Nimizeplace 6
Time Analyzed	Pm Existing	Peak Hour Factor	0.91
Intersection Orientation	East－West \％Wew	Analysis Tlme Period hrs）	0.25 Wew
Project Description			
Lanes			

Vehicle Volumes and Adjustments．

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	4	HT	R	U	－L	T ${ }^{\text {a }}$	R		－ 4	T	R	U浐	Ltw	T	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	0	0	0	0	2	0		0	0	0		O	0	1\％
Configuration							T	TR								R
	\％	414．3	W\％	\％	4		1871			＋		4			4，	5.
Percent Heavy Vehicles（\％）																4
Proportion Time Blocked			3		4		${ }_{3}$	2\％	\pm			－		\＃	W	
Percent Grade（\％）																
Right Turn Channelized			W3	4	2							＊＊				
Median Type｜Storage	Undivided															
Cifical and follow up Headways																

Base Critical Headway（sec）																6.9
Criticalleadway（sec）	＊	92x		（2）	3＊＊	W7W	Y䜌新	\％		3	26	（tater		\＄	$\stackrel{3}{4}$	6.98
Base Follow－Up Headway（sec）																3.3
Follow－Up Headway（sed）	5way	4	＊，䜌	24	18	3\％＊＊	Wisind	3／4	3xam	Wesm	$1{ }^{1 / 3}$	－34	3）		4－	334

Delay Queve length and level of Service

Flow Rate， v （veh／h）																5
Capacity c（veh／h）wher	\％	，3ix		3／4	2，絞	3	＊14	＊）	＊	Wraw	3＊		Y／1／］	714＊＊	＋4\％	225
v／c Ratio																0.02
95\％\％OUEU Length（\％s）（veh）				＋1\％	\％		\％axix	－1384	（1）				\％	3w wave	－	0.1
Control Delay（s／veh）																21.4
Levelof Senice（OSS）		W／4	4	751缞	：	＋3：4	5114	\％		357	\because	\％	3ixtix	93＊		C
Approach Delay（s／veh）															1.4	
Approach Losk		Wex	Wawner	WW\％	3：	\％	\％	2314			4	Watay	What	3＝$=$ C	Cla	W

HCS7 Signalized Intersection Results Summary

HCS7 Two－Way Stop－Control Report

Generalnfomation．

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	Wividu	4Ex	14	（xak $\mathrm{R}_{\text {k }}$	W60		61／w		Way			WR W繮	Eutiz		W4tk	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
			WWW變			Whaw	363x			\％ 0	縎楼	\％0，	\％	0，	Wvoved	
Configuration							T	TR								R
Volume（veb／h）			Wwiw ${ }^{\text {Wumuk }}$	W6maxy	36．14						4awite	變縗		3	3kutaty	Wherevix
Percent Heavy Vehicles（\％）																8
			－ 4 Wisk	WWw way			Waymax	WWWwim						3，Wx		
Percent Grade（\％）																
								葯變		WWW䜌		W5x．	Why	23	䋛	
Median Type｜Storage	Undivided															

Base Critical Headway（sec）																6.9
	Waway	W，way		W ${ }_{\text {Wax }}$	雲新變		Wway	3變變變	W3：3xay		53mandm			Wewdew		7．06
Base Follow－Up Headway（sec）																3.3
	Whatw										Way		3uyw	53y		

Delay，queue Length；and Level of Service

Flow Rate，v（veh／h）																24
Capacity c（ven／t）－		\square					W6w whw	36 5		25asaxa		Weky	Wisw ${ }^{\text {aju }}$	－Way		
v／c Ratio																0.08
				\square		\square								2watut		03
Control Delay（s／veh）																17.7
				\square			\square		\square							C693
Approach Delay（s／veh）														17	7.7	
Approach LOS																

HCS7 Two－Way Stop－Control Report

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movennent	U4	4		R	\％	4	\％Til	R．	U	4	T／3	R ${ }^{\text {d }}$	U	T	Tt	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	0	W0	0 ${ }^{\text {d }}$	－${ }^{\text {a }}$	2 ${ }^{2}$ W	0．		0	O ${ }^{4}$	0		0	0\％	1
Configuration							T	TR								R
	6＊	＊K＂	3	4ide	\％		1908	14		8	\％		2will		4	5
Percent Heavy Vehicles（\％）																4
Proportlon Time Blocked		3	2	Wavers	，${ }^{\text {a }}$		3		－	＋		4			4	－
Percent Grade（\％）																
Right Turn Channelized				We			4	3				\％			3	3
Median Type｜Storage	Undivided															
Critical and Follow up Headways																

Base Critical Headway（sec）																6.9
	Whata	54tatix	Waw		23	Wrawes	2xatu	Wexasa	56，	5widatid	Waxaw	56awid	Gwikh		36：⿳亠丷厂犬	6．98
Base Follow－Up Headway（sec）																3.3
Follow Up Headway（sec）Wew						\square			WWaxy	Wasax	5way	53visw	Wway	12，		3．34＊

De ayy Queur leng th and Level of Service．

Flow Rate，v（veh／h）																5
									－6atay	5evixit			Waydux	53䜌䜌	2	218
v / C Ratio																0.03
									5483＊	－	\square	3awamax	14303		Whatw	0，${ }^{\text {d w }}$
Control Delay（s／veh）																21.9
		Wewe		Whatem	\square			WW5xy				5ymw				Cle
Approach Delay（s／veh）														21	． 9	
Approach LOS																

HCS7 Signalized Intersection Results Summary

HCS7 Signalized Intersection Results Summary

HCS7 Two－Way Stop－Control Report

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U	4	T	B	U	4mim	T	R	U4	＋	T	R	U	L	T1	R
Priority	1 U	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes \％W	0\％	0）	0	0 0	\％${ }^{\text {deind }}$	\％00	\％2a	O		Ofit	W0	0	2314		0	1
Configuration							T	TR								R
Volume（veh／h）							1487	89	3	3ats				\％		86
Percent Heavy Vehicles（\％）																8
Proportion time Blocked，	\％	3：	WWatis			4		313	\％		\＃	$\stackrel{3}{3}$		4		
Percent Grade（\％）																
Right Turn Channelized $/$ avew	3	4		1					栄		4	＋18	\％	24		54
Median Type｜Storage	Undivided															
Critical and rollowno he			15		14×1	$\sqrt{5 \times 4}$	3									

Base Critical Headway（sec）																6.9
Criticalheadvay（sec）	343：		\％	2iv	－	Wex	3 ${ }^{\text {W，}}$	W3x	5484	13／3m	W6y		W	W4＊	2）	706\％
Base Follow－Up Headway（sec）																3.3
Finlow		WW變			154．	Wway				Frew	539	（1）	31／4	1－7303	－	338

Belay，Queue length，and Level of Service

Flow Rate，v（veh／h）																91
Wapacty civehh）	W析	W547	WY\％	－			极矕	3	W3：	\％	\％	W6木䜌	3	W：3	\％	297
v／c Ratio																0.31
95\％Queue Length，Q95（veh）	－	\％		5ive	3	7－3／3					－	－ 4	35	3	4	13
Control Delay（s／veh）																22.4
Levellof Service（OS）	2\％	W，\％	${ }_{3}^{2}$		\％	\％	，	，\％	，\％	4	Wiz	W		言䜌	＋	C
Approach Delay（s／veh）														22	2.4	
Approach LOS	3il	（3）	23：3	\％						［19314	（1）	＋	Wam	WW	CW	4，

HCS7 Two－Way Stop－Control Report

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movernent wiwn wrix	U1）	L	T	R	U	1／	T ${ }^{\text {a }}$	R	U	L	Ti	R	U4	4	T	R
Priority	10	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of Lanes ${ }^{\text {a }}$ Num	0	0	0	0	0	O	2 ${ }^{2}$	0		0	－${ }^{\text {aju }}$	0		0	0	1
Configuration							T	TR								R
Volume（veh／h）\％\％wax			3	\％	＋	$\stackrel{3}{12}$	1552	5	＋		317	4		＊		24
Percent Heavy Vehicles（\％）																8
Proportlon Time Blocked	3		3	4	Nati		3ailid	\％	\％${ }^{2}$	23：	4tided		4			
Percent Grade（\％）																
Right Tunh Channelized					4	＋	3／	$\sqrt{3}$						（ix）	析	W183
Median Type｜Storage	Undivided															
Cifical and Follow up Headways																

Base Critical Headway（sec）																6.9
Critical Headway（sec）．	，\％	72				s＊	3	：3	\％	Has：	\％	＋		3		7.06
Base Follow－Up Headway（sec）																3.3
Follow－Up Headwny（sec）	）${ }^{2}$	34 3－	，	4	U11：	Wix	U3：	3 ${ }^{\text {a }}$	¢0，	－	＋	8＊	5121：	\％		338.

Deby Queue length，and bavelof Service

Flow Rate，v（veh／h）																26
Capacity civehth		WVyy	W569］			（3）［3］	53－3縎	Watway		5axay				3	W，	302
v / c Ratio																0.08
						\square										0．3．3
Control Delay（s／veh）																18.0
Levelot Service（LOS）			3ves變						7xavad	TMex	W596繧	W變變紜高	WWayd		Wiky	CW：
Approach Delay（s／veh）															8．0	

HCS7 Two－Way Stop－Control Report

Generil Information		Site information	
Analyst	EIC	Intersection	Rt． 130 \＆Site Driveway
Agercy／0．	DP:		4
Date Performed	7／24／2019	East／West Street	Rt． 130
Analysis Year	2019	North／South Street	Site Drivevay vaw
Time Analyzed	Am Build	Peak Hour Factor	0.91
Intersection Orientation	East－West	Analysis thme Penod（his）	
Project Description			
Lanes			

Vehicle Volumes and Adjustments

Approach	Eastbound				Westbound				Northbound				Southbound			
Movement	U4	Hatiz	T	\％R R	U4id	W	T	R		4	IVa	R	U	4	T	R
Priority	10	1	2	3	4 U	4	5	6		7	8	9		10	11	12
Number of tanes	0	4	0	0	\％tor	0	2	0	3	O 0	0	0		0	0	1
Configuration							T	TR								R
Volume（vehbumsuxa max	＋	${ }^{2} \mathrm{a}$	\％${ }^{3}$	\％	＋	－ 3	18566	75\％	3148		＊	54：3	3	4	H	71：
Percent Heavy Vehicles（\％）																4
ProportohtimeBlocked											＋2：4			31484		\％
Percent Grade（\％）																
Right Tum Channelized	3					${ }^{2}+2$	2	2				$2{ }_{2}^{2}$	4，	54\％	3ix	3
Median Type｜Storage	Undivided															
Critical and Followup Headways																

Base Critical Headway（sec）																6.9
Critical Headway（sec）	＊	＋	W14	W4：4	5wayd	Wexs	－	5	－	W	3	（ ${ }^{4}$	135	3	\％	6.98
Base Follow－Up Headway（sec）																3.3
follow up Headway（sec）	V＋V．				1354＊	Whatay	W）		Wrw		－25a	＂	\％	，	，	334

Belay，Queue Length and level of Service

Flow Rate， v （veh／h）																78
Copacty， （veh／h）	－	23縎		＋ixtit	W，	＊	36	－	3變	32	（2）		＋3i ${ }^{\text {a }}$		4\％	217
v／c Ratio																0.36
95\％Queuelength：Qoss（veh）wisw		－	－		＊	4－1／4	Ti	5484	313	할	4	＋1\％	\because	（3）	\％	6
Control Delay（s／veh）																30.7
Levelof semice（LOS）	W\％		标析	W䜌	3 3		3	33］	3isun	－	－			－		${ }^{\circ}$
Approach Delay（s／veh）															0.7	
Approach Les	Kive				\square						hisus		$3{ }^{3 / 2 \pi}$	號		－

HCS7 Two-Way Stop-Control Report

General hformation

Vehicle Volumes and Adjustments

Base Critical Headway (sec)																6.9
Critical Headway (sec)	4isay	\%	2)		3:	\%14				\%	O2e		+			6.98
Base Follow-Up Headway (sec)																3.3
Follow-UpHeadway (sec)	Y)	13:3	Y4	T3x	(1)	-1/3.	W	, +		, 3 ,	枸	12,	,	6-4ay	.	334

Delay, Queue Leng th, and Level of Service

Flow Rate, v (veh/h)																78
Capacity, c (vehb)	Whax	W	W43:3	W\%	-	3ta	Wisith	2317		Wisiz	\%		41/4	43/3	Whas	217
v/c Ratio																0.36
95\% Queue length, Qus (vehluma	-		\%	-		-6ydm	W\%		4	N1/4iv	5isu	46	* ${ }^{2}$ / ${ }^{2}$	3ikid		16
Control Delay (s/veh)																30.7
Levelof Sevice (LOS		\% ${ }^{\text {a }}$			34 3^{3}	93\%		-			\%	Wiw		-	3	D.
Approach Delay (s/veh)															0.7	
Approach Los waw			,	-		Yw whe	,	23.Wh	\%	4	- ${ }^{\text {atw }}$	3/4.4.4	,	\%	Q ${ }^{\text {a }}$	Wers

HCS7 Two-Way Stop-Control Report

Vehicle Volumes and Adjustments

Base Critical Headway (sec)																6.9
Criticalileadway (sec)	WII\%	\%	3)	3	3			${ }^{3}$		3:	,		:			6.98
Base Follow-Up Headway (sec)																3.3
Follow Up Headway (sec)	-	I	Wix	2,	2,	3214	,	나넨	5	3 ${ }^{\text {a }}$		-	,	4way	3 ${ }^{\text {a }}$	3.344

Delay, Queue Length and Level of Service

Flow Rate, v (veh/h)																7
Capacity c c veh/h) ${ }^{\text {a }}$,														W3/3變	W4.4.	215
v / c Ratio																0.03
						\square			\square				5/5]			O,
Control Delay (s/veh)																22.3
			WTwe									-4x		\%	\%	${ }^{\text {Cumax }}$
Approach Delay (s/veh)														22	. 3	
Approach LOS												3543				658wix

HCS7 Signalized Intersection Results Summary

