STORMWATER MANAGEMENT REPORT

for

King Arthur Court Warehouse

2 King Arthur Ct Block 252, Lot 5.03 North Brunswick, Middlesex County

Prepared For:

The Silverman Group 195 Morristown Road Basking Ridge, NJ 07920

Prepared By:

Langan Engineering and Environmental Services, Inc. 300 Kimball Drive Parsippany, New Jersey 07054 NJ Certificate of Authorization No. 24GA27996400

Daniel Miola, P.E. Professional Engineer License No. 24GE04676300

> 08 May 2023 100851001

LANGAN

300 Kimball Drive

Parsippany, NJ 07054

T: 973.560.4900

F: 973.560.4901

www.langan.com

New Jersey • New York • Connecticut • Pennsylvania • Washington, DC • Virginia • West Virginia • Ohio • Florida • Texas • Arizona • California Abu Dhabi • Athens • Doha • Dubai • London • Panama

TABLE OF CONTENTS

Section No	<u>Page No.</u>
1.0 INTRODUCTION. 1.1 Scope and Executive Summary. 1.2 Existing Site Description. 1.3 Proposed Development. 1.4 Environmental Site Analysis.	
2.0 REGULATORY REQUIREMENTS AND COMPLIANCE 2.1 Runoff Quantity 2.2 Runoff Quality 2.3 Groundwater Recharge	2 2
3.0 DESIGN METHODOLOGIES 3.1 Hydrology Methodology 3.2 Conveyance Methodology	3
4.0 PRE-DEVELOPMENT CONDITIONS. 4.1 Existing Land Use 4.2 Soils. 4.3 Existing Watersheds.	5 5
5.0 POST-DEVELOPMENT CONDITIONS 5.1 Proposed Development. 5.2 Proposed Watersheds and Water Quantity Analysis. 5.3 Proposed Water Quality Analysis. 5.4 Conveyance. 5.5 Conduit Outlet Protection. 5.6 Berm and Dam Analysis.	
6.0 CONCLUSION	11

FIGURES

Figure 1	USGS Site Location Map
Figure 2	HUC14 Watershed Map
Figure 3	Surface Waters Map
Figure 4	FEMA Effective FIRM Map
Figure 5	FEMA Effective Flood Profile 1
Figure 6	FEMA Effective Flood Profile 2
Figure 7	NJDEP Threatened and Endangered Species Habitat Map
Figure 8	NRCS Soils Map

DRAWINGS

CG101	Grading Plan	
CG102	Drainage Plan	
CS501	Site Plan Details 1	
CS502	Site Plan Details 2	

CS503	Site Plan Details 3
CS503	Site Plan Details 4
WB101	Existing Watershed Plan
WB102	Proposed Watershed Plan
WB103	Proposed Sub-Watershed Plan

APPENDICES

Appendix A	Pre-Construction Hydrologic Analysis
Appendix B	Post-Construction Hydrologic Analysis
Appendix C	Water Quality Storm Hydrologic Analysis
Appendix D	Groundwater Recharge Analysis
Appendix E	Proposed Stormwater Conveyance System Calculations
Appendix F	Conduit Outlet Protection Calculations
Appendix G	Geotechnical Stormwater Investigation Report

1.0 INTRODUCTION

1.1 Scope and Executive Summary

This report presents the results of the storm water management analysis for the proposed warehouse development at 2 King Arthur Ct, North Brunswick, New Jersey.

As explained in detail below, the project will meet the regulatory requirements set forth in N.J.A.C. 7:8; Stormwater Control for non-Residential Major Development Ordinance of North Brunswick; and the Standards for Soil Erosion and Sediment Control in New Jersey.

1.2 Existing Site Description

The site is located at 2 King Arthur Ct in North Brunswick, New Jersey, in the I-2 Industrial zone. Identified by the Township's tax maps as Block 252, Lot 18, the site has an area of approximately 15.56 acres. The site contains a 2-story office building and three small maintenance garages, with associated driveways and parking lots. A small pump house building with a deck exists on the Westons Mill Pond within the northeastern corner of the site. The site is generally bound by light industrial development to the north and west, a residential community in the neighboring Borough of Milltown to the south, forested uplands and wetlands border the site to the northeast and south, and Weston Mills Pond to the east. A tributary to the Lawrence Brook is also present in the northern portion of the site. The southern lot line also is the municipal boundary with the Borough of Milltown.

The current stormwater facilities onsite consist of conveyance pipes that carry the site's runoff to the east directly into Weston Mills Pond and Lawrence Brook.

1.3 Proposed Development

The project will redevelop the site to an approximately 164,000 SF footprint warehouse. The building finished floor elevation will be approximately elevation 61.0 (NAVD 88). The development proposes 33 loading docks, 19 trailer parking spaces, and 98 car parking spaces. Additionally, site driveways, gates and fences, utility improvements and other pertinent site improvements are proposed. Landscaping and lighting will also be incorporated into the proposed site improvements.

1.4 Environmental Site Analysis

The wetlands on-site were delineated by Langan Engineering and Environmental Services, Inc. in March 2021. The wetlands delineated on-site were forested wetlands (Wetland A), an isolated drainage depression (Wetland B) and State Open Waters.

Wetland A is located on the north, east and south sides of the site in heavily forested areas. Wetland B is located around an existing stormwater outfall on the east side of the site that experiences ponding. The State Open Water wetlands are located along the portions of Weston Mills Pond and Lawrence Brook that border the property.

Pursuant to NJDEP Landscape Project Mapping, Wetland A is mapped as potential nesting and foraging habitat for bald eagles (rank 4). As such, it is anticipated that this wetland will be regulated as an exceptional resource value wetland with a transition area of 150 feet in width. A transition area averaging plan waiver is being prepared and will be submitted for NJDEP Division of Land Resource Protection (DLRP) approval.

Westons Mill Pond is classified as a FW2-NT (Freshwater 2 – Non-Trout) water body, pursuant to the Surface Water Quality Standards at N.J.A.C. 7:9B.

A portion of the project site also falls within the Flood Hazard Area of the Lawrence Brook and Weston Mill Pond. The Flood Hazard Area, as determined by Federal Emergency Management Agency (FEMA) on site is 26.0 (NAVD88) – refer to Figures 4 through 6. Using the proposed 2023 Flood Hazard Area Control Act Rule Amendment at N.J.A.C. 7:13 FEMA fluvial method, (26.0 + 3-feet), the Flood Hazard Area is depicted on the site at 29 (1988 NAVD).

2.0 REGULATORY REQUIREMENTS AND COMPLIANCE

Because the project proposes to disturb more than one acre and increase the amount of regulated impervious surface by more than a quarter-acre, it meets the definition of a "major development" under N.J.A.C. 7:8-1.2 and the Stormwater Control for non-Residential Major Development Ordinance of North Brunswick. Therefore, the following items must be addressed.

2.1 Runoff Quantity

NJAC 7:8-5.4(a)(3) requires control of stormwater runoff quantity control impacts. Currently, the proposed 2023 Stormwater Management Rule Proposal Amendment at N.J.A.C. 7:8 has not been formally published and adopted. In anticipation that the project will not be grandfathered into the 2020 N.J.A.C. 7:8 Stormwater Management rules, the stormwater management runoff quantity design was done in accordance with the proposed rules.

Pursuant to the 2023 amendment to NJAC 7:8, one way to address this requirement is to design stormwater management measurements such that the peak runoff rates for the current and future 2-, 10-, and 100-year storm events are less than or equal to 50, 75 and 80 percent, respectively, of the pre-construction stomwater runoff that is attributable to the portion of the site on which the proposed development is to be constructed. Hydrologic analyses have been prepared to demonstrate this methodology. Those analyses are discussed further in sections 4 and 5 of this report.

2.2 Runoff Quality

NJAC 7:8-5.5 requires that stormwater management measures shall be designed to reduce the post-construction load of total suspended solids (TSS) in stormwater runoff generated from the water quality design storm by 80 percent of the anticipated load from the developed site, expressed as an annual average. Quality standards in NJAC 7:8-5.5 are applicable to any major development that results in an increase of one-quarter acre or more of regulated motor vehicle

surface. Therefore, since the proposed development results in an increase of regulated motor vehicle surface exceeding the 0.25-acre threshold, quality standards must be met.

The stormwater quality analysis used the NJDEP stormwater quality design storm consisting of 1.25 inches of rainfall in two hours with a distribution defined in Table 5-2 of the New Jersey Stormwater Best Management Practices Manual.

2.3 Groundwater Recharge

NJAC 7:8-5.4 requires groundwater recharge to be maintained at 100% of the average annual pre-construction groundwater recharge volume. To demonstrate that there will be no postdevelopment annual recharge deficit, the New Jersey Groundwater Recharge Spreadsheet (NJGRS) was completed. This analysis is discussed further in section 5 of this report.

3.0 DESIGN METHODOLOGIES

Below is a summary of the methodologies of the major elements of the design of the storm water management system.

3.1 Hydrologic Methodology

Stormwater runoff calculations associated with this report were prepared using the SCS Method as contained in the USDA Soil Conservation Service Publication TR-55, "Urban Hydrology for Small Watersheds". TR-55 outlines procedures for calculating peak rates of runoff resulting from precipitation events and procedures for developing hydrographs. The TR-55 procedure simulates a watershed using the drainage area, curve number (CN), and time of concentration (Tc) for each watershed. The design storm used for the TR-55 analysis is the NOAA Atlas 14 NJ Region D cumulative 24-hour rainfall distribution. Rainfall data was based on depths described in the "Precipitation-Frequency Atlas of the United States" National Oceanic and Atmospheric Administration (NOAA) Atlas 14, Volume 2, Version 3.

The depths for the 2-, 10-, and 100-year storms in Middlesex County are 3.34, 5.10, and 8.58 inches, respectively.

The precipitation depths for the current and future 2-, 10- and 100-year storm events are determined by multiplying the precipitation depth obtained from NOAA by the adjustment factors and change factors for the current and future precipitation depths, respectively. The adjustment and change factors are specific to the county, or counties, in which the drainage area(s) of the site are located. Where a drainage area lies in more than one county, the precipitation values can be adjusted according to the percentage of drainage area in each county, or separate rainfall totals can be developed for each county using the values provided in the proposed 2023 Stormwater Management Rule Proposal Amendment at N.J.A.C. 7:8, tables 5-5 and 5-6.

Table 3.1 below demonstrates the current and future precipitation depth calculations:

Design Storm	NOAA Atlas 14 Point Precipitation Frequency Estimate (in)	Current Precipitation Adjustment Factor *	Current Precipitation (in)	Future Precipitation Change Factor *	Future Precipitation (in)
2-Yr	3.34	1	3.34	1.19	3.97
10-Yr	5.1	1.01	5.15	1.21	6.17
100-Yr	8.58	1.03	8.84	1.33	11.41

Table 3.1 – Precipitation Depths

*Adjustment and Change factors are specific to Middlesex County

The curve number is a land-sensitive coefficient that dictates the relationship between total rainfall depth and direct storm runoff. Based on the coverage of soil groups and land use in the area, CN values were determined for each watershed for the existing and proposed conditions. Separate hydrographs were prepared for pervious and impervious areas as well as combined hydrographs for both pervious and impervious areas.

The soils within the watersheds analyzed were classified as hydrologic soil group D. The SCS classification system evaluates the runoff potential of a soil according to its infiltration and transmission rates. "A" soils have the lowest runoff potential and "D" soils have the greatest runoff potential.

The following curve numbers, associated with hydrologic soil group "D", were used:

Land Cover	CN
Open Space/Landscaped	80
Brush	77
Gravel	91
Impervious	98

Table 3.2 – Project Curve Numbers

The time of concentration is defined as the time for runoff to travel from the hydraulically most distant point of the watershed to a point of interest/analysis. Values of the time of concentration calculated for each watershed based on land cover and slope of the flow path using methods described in TR-55.

3.2 Conveyance Methodology

Runoff was calculated using the rational method and pipe capacities were analyzed using hydraulic grade line analysis in Hydrology Studio's Stormwater Studio Software. Rainfall data was based on intensities described in the "Precipitation-Frequency Atlas of the United States" National Oceanic and Atmospheric Administration (NOAA) Atlas 14, Volume 2, Version 3. The storm sewer conveyance system was analyzed using the Rational Method for estimating runoff

from a 25-year design storm. The site was divided into sub-areas, each contributing runoff to an individual catch basin inlet or roof drain as depicted on the "Proposed Subwatershed Plan," included as drawing WB103 herein. A weighted average runoff coefficient was chosen based on the percentage of each type of land cover using the following coefficients:

Land Cover	С
Landscaped	0.65
Brush	0.59
Gravel	0.84
Impervious	0.99

Table 3.3 – Project Runoff Coefficients

4.0 PRE-DEVELOPMENT CONDITIONS

4.1 Existing Land Use

The site is commercially developed, consisting a 2-story office building and three small maintenance garages, with associated driveways, parking lots and landscaping. The site is generally bound by light industrial development to the north and west, a residential community in the neighboring Borough of Milltown to the south, forested uplands and wetlands border the site to the northeast and south, and Weston Mills Pond to the east. A tributary to the Lawrence Brook is also present in the northern portion of the site. The topography of the developed portion of the site is relatively flat. Landscaped areas immediately surround the existing development and are covered mostly with grass with some trees and vegetation. The undeveloped portion of the site slopes towards Weston Mills Pond and Lawrence Brook.

4.2 Soils

According to the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) soil survey map for Middlesex County, New Jersey, the site is classified as mostly Keyport-Urban Land Complex (KeuC), with portions of the site classified as Keyport Loam (KeoB), Klinesville Channery Ioam (KkoE), and Humaquepts (HumAt); see Figure 8 – Soils Map. Each aforementioned soil is classified as a hydrologic soil group (HSG) D or HSG A/D soil. Therefore, for the purpose of the hydrology analysis, the site was considered to be entirely HSG D.

In accordance with chapter 12 of the NJ BMP Manual, a preliminary geotechnical stormwater investigation was performed onsite in December of 2022 and a supplemental geotechnical stormwater field investigation in January of 2023. The investigations consisted of test pits, single ring infiltration tests at select test pit locations and lab testing, including laboratory permeability tests. The findings from both investigations were used in the design of the proposed stormwater facilities.

The investigation is summarized in the Soils Investigation for Stormwater Management Memo, prepared by Langan Engineering, dated 05 May 2023, and provided in Appendix G.

4.3 Existing Watersheds

The existing watershed analysis consists of two points of analysis, with tributary runoff from five watersheds as shown on Watersheds Plan, sheet WB101, and described below. The existing watershed data and hydrographs are provided in Appendix A.

Point of Analysis A is Weston Mills Pond on the east side of the site.

Watershed A-1 consists of 2.15 acres of forested area, landscaped area, and parking lot area that will be disturbed and is conveyed both overland and via storm pipes into Weston Mills Pond on the east and south side of the site.

Watershed A-2 consists of 3.39 acres of landscaped, parking lot and driveway area that will be disturbed and is conveyed solely via storm pipe into Weston Mills Pond on the east side of the site.

Watershed A-3 consists of 0.44 acres of mostly landscaped area that will be disturbed and is conveyed overland into Weston Mills Pond on the east side of the site.

Watershed A-4 consists of 2.96 acres of forested area, landscaped area, driveway and parking lot area that will be disturbed and is conveyed to a yard inlet and ultimately via pipe to Weston Mills Pond on the north side of the site.

Point of Analysis B is at an existing yard inlet beside the Conrail-owned railroad.

Watershed B consists of stormwater surface runoff that is collected overland to an existing yard inlet from the immediate area in the vicinity of the railroad.

The peak discharges for the site are summarized in the following table. Watershed data and hydrographs are provided in Appendix A.

Storm	Current Precipitation		Future Precipitation	
Frequency (year)	Watershed A (cfs)	Watershed B (cfs)	Watershed A (cfs)	Watershed B (cfs)
2	15.24	3.69	19.18	4.54
10	26.76	6.14	33.42	7.54
100	50.99	11.2	67.92	14.71

Table 4.1 - Summary of Existing Peak Discharges

5.0 POST-DEVELOPMENT CONDITIONS

5.1 Proposed Development

The proposed development consists of an approximately 164,000 SF footprint warehouse with on-site parking for passenger vehicles and trailer parking spaces. In addition, associated site improvements including utilities, landscaping, and lighting will be incorporated into the proposed development. The project will disturb approximately 9.85 aces and will result in a total impervious area of 7.93 acres, which is an increase of 3.5 acres in comparison to the existing condition. The total vehicular use area is increased by 0.54 acres in comparison to the existing condition.

5.2 Proposed Watersheds and Water Quantity Analysis

The proposed development consists of seven watersheds, with two points of analysis, as shown on the Proposed Watersheds Plan, sheet WB102, and described below.

Watershed A-1 comprises 2.13 acres of stormwater runoff from landscaped and vehicular surface areas on the northwest side of the site. The runoff is collected via overland flow to catch basins, conveyed via a system of storm pipes to Basin A-1 for quality and quantity management. Basin A-1 discharges to a headwall on the northeast side of the site and ultimately to Point of Analysis A, Weston Mills Pond.

Watershed A-2 comprises 2.38 acres of stormwater runoff from landscaped and vehicular surface areas on the south, east, and north sides of the site. The runoff is collected via overland flow to catch basins, conveyed via a system of storm pipes to Basin A-2 for quality and quantity management. Basin A-2 discharges to a headwall on the east side of the site and ultimately to Point of Analysis A, Weston Mills Pond.

Watershed A-3 comprises 2.20 acres of stormwater runoff from the northern portion of the building roof area. The runoff is conveyed via a system of storm pipes to underground infiltration Basin A-3 for quantity management. Basin A-3 discharges to a headwall on the east side of the site and ultimately to Point of Analysis A, Weston Mills Pond.

Watershed A-4 comprises 1.57 acres of stormwater runoff from the southern portion of the building roof area. The runoff is conveyed via a system of storm pipes to underground infiltration Basin A-4 for quantity management. Basin A-4 discharges to a headwall on the east side of the site and ultimately to Point of Analysis A, Weston Mills Pond.

Watershed A-5 comprises 1.01 acres of stormwater runoff from landscaped and vehicular surfaces areas that is conveyed through a green-infrastructure manufactured treatment device to a headwall on the south side of the site and ultimately to Point of Analysis A, Weston Mills Pond.

Watershed A-6 0.81 acres of surface runoff is from open space that flows overland to Point of Analysis A, Weston Mills Pond.

Watershed A and Watershed B have been designed to provide the required peak reductions, as described in section 2.1 of this report. Peak reductions have been applied to the disturbed portions of the development. Since the analysis area consisted of only the parts of the site that will be disturbed, this applies to the Watersheds A and B.

The proposed watershed data and hydrographs are provided in Appendix B. The results are summarized below.

Peak flow reductions of 50%, 75% and 80% have been applied to the existing flows from Watersheds A and B for the current and future 2-, 10-, and 100-year storm events, respectively.

Current Precipitation						
Storm Event	Existing Flow	Allowable % of Flow	Allowable Flow	Proposed Flow		
2	15.24 cfs	50%	7.62 cfs	4.01 cfs		
10	26.76 cfs	75%	20.07 cfs	9.55 cfs		
100	50.99 cfs	80%	40.79 cfs	35.26 cfs		
		Future Precipitatio	n			
Storm Event	Storm Event Existing Flow Allowable % of Flow Allowable Flow Proposed Flow					
2	19.18 cfs	50%	9.59 cfs	5.59 cfs		
10	33.42 cfs	75%	25.07 cfs	16.50 cfs		
100	67.92 cfs	80%	54.34 cfs	50.72 cfs		

Table 5.2 – Watershed A - Summary of Allowable Flows and Proposed Discharges

Table 5.3 – Watershed B - Summary of Allowable Flows and P	Proposed Discharges
--	---------------------

Current Precipitation					
Storm Event	Existing Flow	Allowable % of Flow	Allowable Flow	Proposed Flow	
2	3.69 cfs	50%	1.85 cfs	1.23 cfs	
10	6.14 cfs	75%	4.61 cfs	2.25 cfs	
100	11.2 cfs	80%	8.96 cfs	4.70 cfs	
	Current Precipitation				
Storm Event	Storm Event Existing Flow Allowable % of Flow Allowable Flow Proposed Flow				
2	4.54 cfs	50%	2.27 cfs	1.61 cfs	
10	7.54 cfs	75%	5.66 cfs	3.00 cfs	
100	14.71 cfs	80%	11.77 cfs	6.33 cfs	

5.3 Proposed Water Quality Analysis

The proposed development water quality measures includes two small-scale underdrained bioretention basins, two small-scale subsurface infiltration basins, and three green-infrastructure (GI) manufactured treatment devices. Each BMP provides a minimum of 80% TSS removal and are designed in accordance with the NJ BMP manual. A 3.5 acre increase in

regulated impervious area and 0.54 acre increase in regulated motor vehicular surface is proposed.

A majority of the onsite landscaped and vehicular surface runoff will be conveyed to one of two small-scale underdrained bioretention basins (Basins A-1 and A-2). Pursuant to chapter 9.7 of the NJ BMP Manual, pretreatment is required for small-scale bioretention systems designed to infiltrate into the subsoil that include exfiltration in the stormwater routing calculations. However, Basins A-1 and A-2 are underdrained and not designed to infiltrate into the subsoil, and therefore do not include exfiltration in the routing calculations. Therefore, pretreatment is not required.

The remaining 1.01 acre of onsite landscaped and vehicular surface runoff is conveyed through one of three Contech Filterra Bioscape Vaults before discharging into Weston Mills Pond. Sizing calculations for each unit are provided in Appendix C.

Roof runoff will be sent to one of the two subsurface infiltration basins (Basins A-3 and A-4). The proposed building's roofline will be higher than the surrounding trees and therefore there is no potential for debris or vegetative material to be present in the roof runoff. Additionally the proposed development does not have air discharge or other situations where contaminants could deposit on the roof. Therefore, pretreatment is not proposed for the subsurface infiltration basins.

Pursuant to the New Jersey Stormwater Best Management Practice Manual, the performance and characteristics of each bioretention basin are shown in Table 5-2.

Basin ID	ВМР Туре	Basin Bottom Elevation (NAVD 88)	Ground Water Elevation (NAVD 88)	Ground Water Mounding Height (ft)	W.Q. Storm Runoff Depth (ft)	Infiltration Rate (In/hr)	Soil Bed Depth (In)	Sand Layer Depth (In)	Gravel Bed Depth (In)
A-1	Small-Scale Bioretention (Underdrained)	47	41.5	N/A	0.91	N/A	18.0	6.0	17.5
A-2	Small-Scale Bioretention (Underdrained)	47	42.6	N/A	1.00	N/A	18.0	6.0	17.0
A-3	Small-Scale Subsurface Infiltration	49.5	42.6	5.40	0.67	0.75	N/A	N/A	6
A-4	Small-Scale Subsurface Infiltration	51.5	45.6	5.24	0.47	1.0	N/A	N/A	6

The small-scale bioretention and subsurface infiltration basins have been designed in accordance with the NJ BMP Manual chapters 9.7 and 9.8, respectively.

The underdrained small-scale bioretention basins have water quality storm runoff depths of no more than 1-ft, have soil beds with a minimum depth of 18-in to achieve 80% TSS removal, and have proper separation from the seasonal high water table (SHWT).

The subsurface infiltration basins have water quality storm runoffs depths below the maximum of 2-ft, have been analyzed for groundwater mounding conflicts, and have been designed with subsoil infiltration rates that have been tested in accordance with chapter 12 of the NJ BMP Manual.

Water quality calculations are provided in Appendix C.

5.3 Proposed Ground Water Recharge Analysis

The proposed development increases the amount of impervious coverage by 3.5 acres and reduces the amount of wooded coverage and open space, resulting in a post-development annual recharge deficit volume of 163,705 cubic feet. The two small-scale subsurface infiltration basins are designed to compensate for the loss of annual recharge. To demonstrate this, a completed New Jersey Groundwater Recharge Spreadsheet (NJGRS) has been provided in Appendix D.

Pursuant to the New Jersey Stormwater Best Management Practice Manual, the inputs into the NJGRS BMP Calculations Tab and results for each basin are summarized below in Table 5.3.

Basin ID	BMP Infiltration Area (SF)	Bottom Elevation (NAVD 88)	First Orifice Elevation (NAVD 88)	Effective Depth with 0.4 Void Ratio (IN)	Impervious Area to Basin (AC)	Annual BMP Recharge Volume (CuFt)
A-3	9,117	49	50	4.80	2.20	179,145
A-4	10,599	51	51.5	2.40	1.57	113,494
					Total Recharge:	292,639

Table 5.3 – Subsurface Infiltration Basin Characteristics

5.4 Conveyance

The proposed stormwater conveyance system was sized to convey the runoff from the 25-yr storm. Pipes that discharge into basins were designed with a tailwater matching the 2-year peak basin water surface elevation.

All pipes are able to convey flow from the 25-year storm without overtopping catch basin grates or manhole rims. The results of the hydraulic calculations are provided in Appendix E.

The underdrains for the proposed small-scale bioretention basins were checked to confirm capacity for at least twice the infiltration rate of the sand layer, when the sand layer infiltration rate is twice the infiltration rate of the soil bed. Therefore, calculations for the hydraulic capacity of the underdrains must be at least four times of the infiltration rate provided by the soil bed.

These calculations are shown in Appendix E.

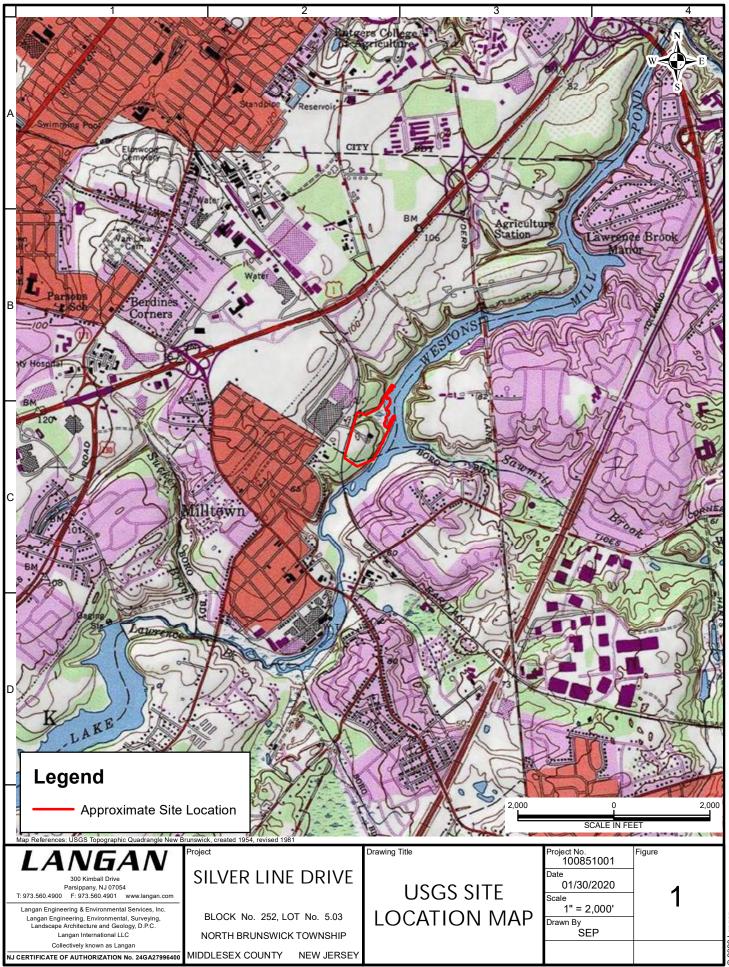
5.5 Conduit Outlet Protection

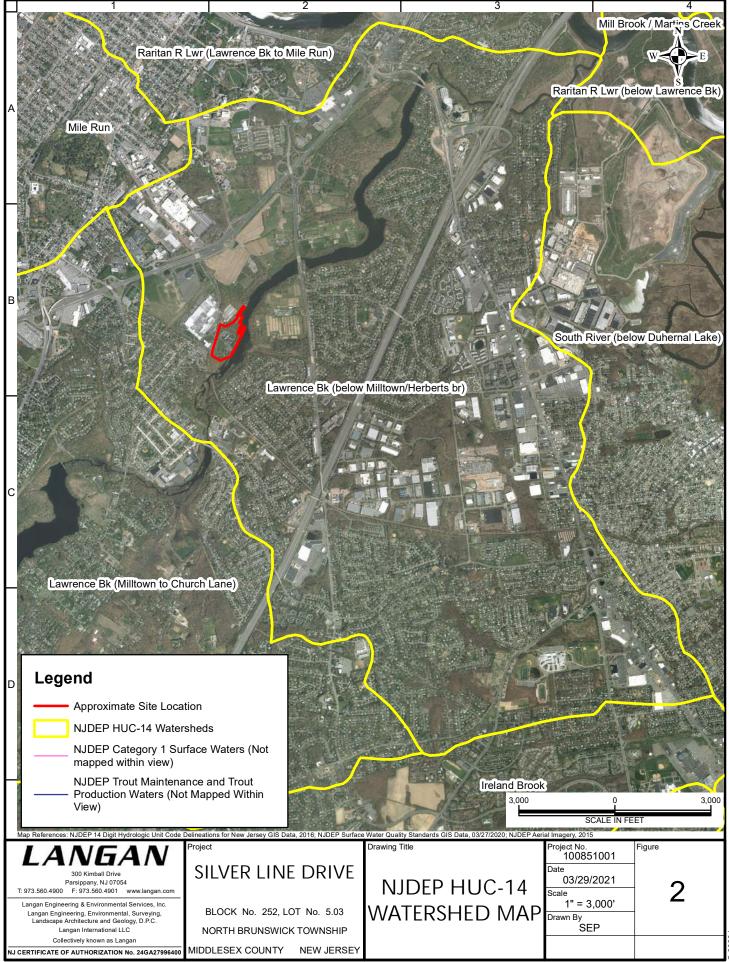
The soil filter bed material will have similar properties to a silty loam, which can withstand velocities of up to 3.0 feet per second without eroding, per the Standards for Soil Erosion and Sediment Control in New Jersey.

Rip-rap outlet protection is provided for the outlets into Basins A-1 and A2, and scour holes are proposed at the outfalls to Weston Mills Pond. Calculations are provided in Appendix E.

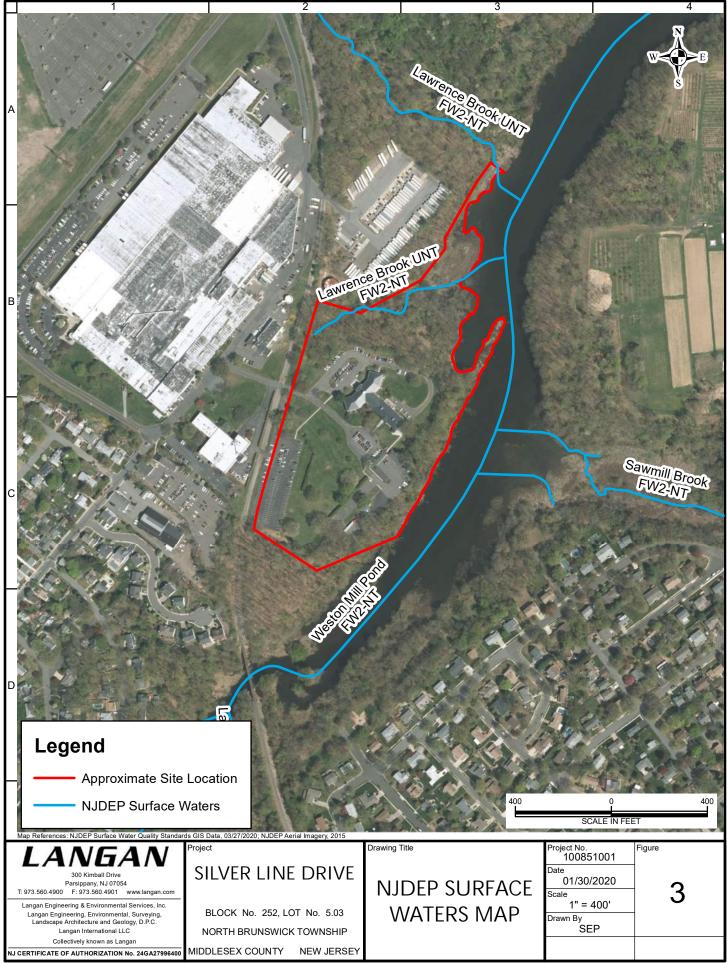
5.6 Berm and Dam Analysis

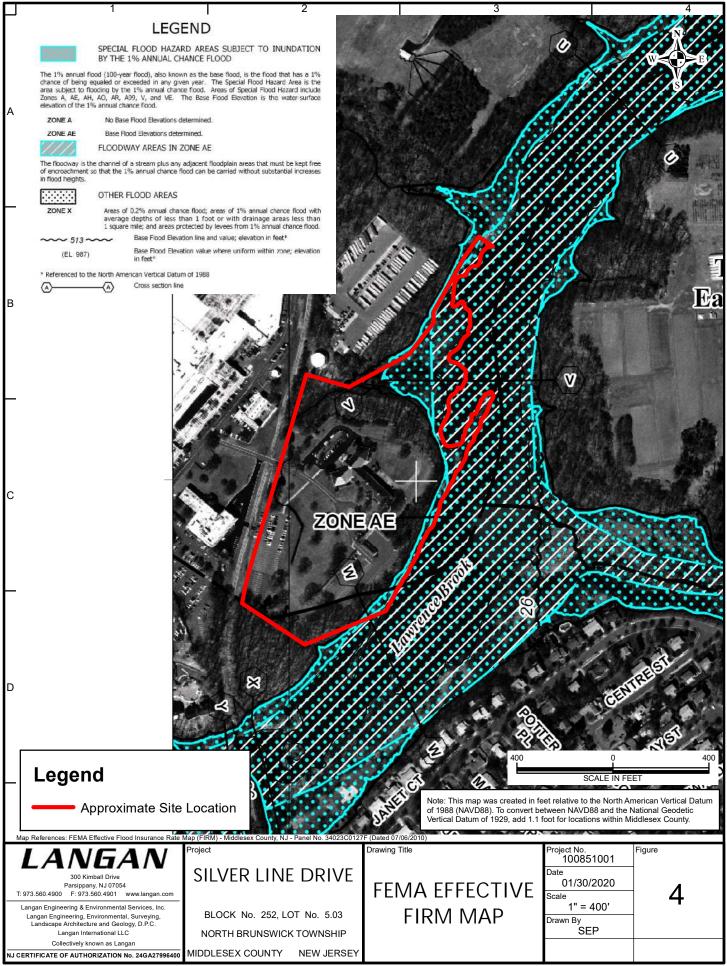
The bioretention basins are constructed entirely in cut and do not impound water on a temporary basis that is more than 5 feet in height. Therefore they do not meet the definition of a dam in NJAC 7:20. No further analysis is required.

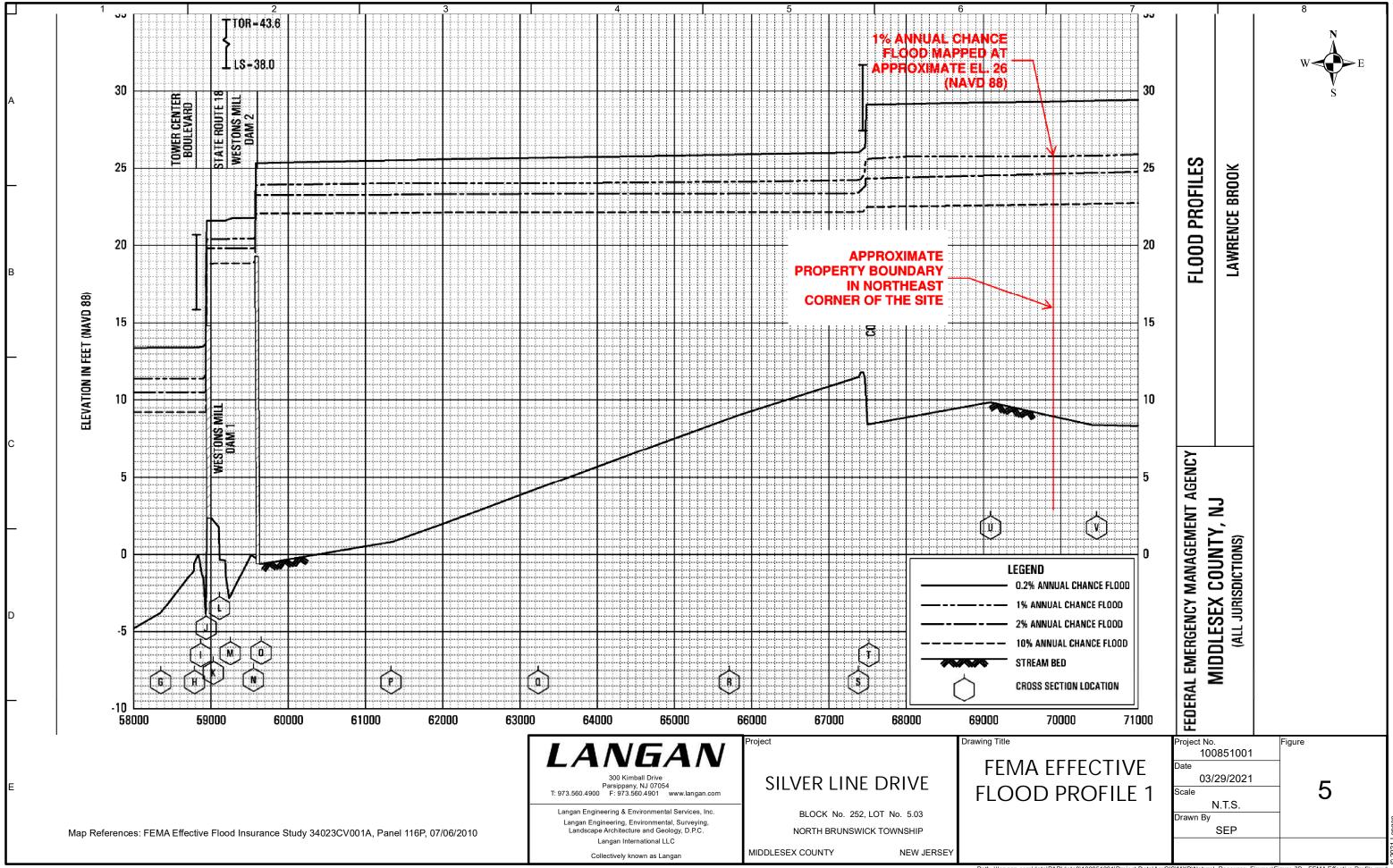

6.0 CONCLUSION

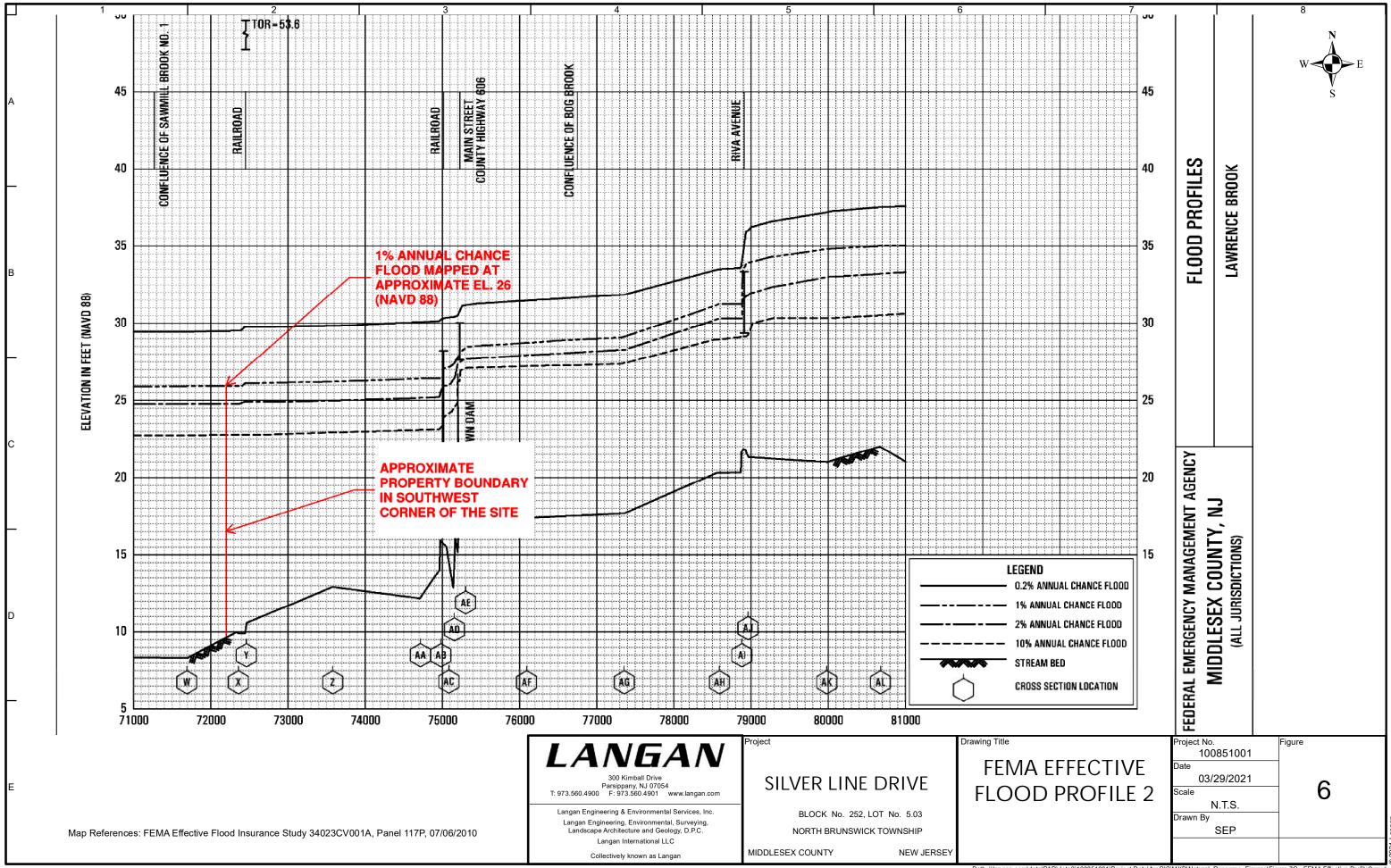

The results of this study indicate that the regulatory requirements have been met for the project. The design is in accordance with:

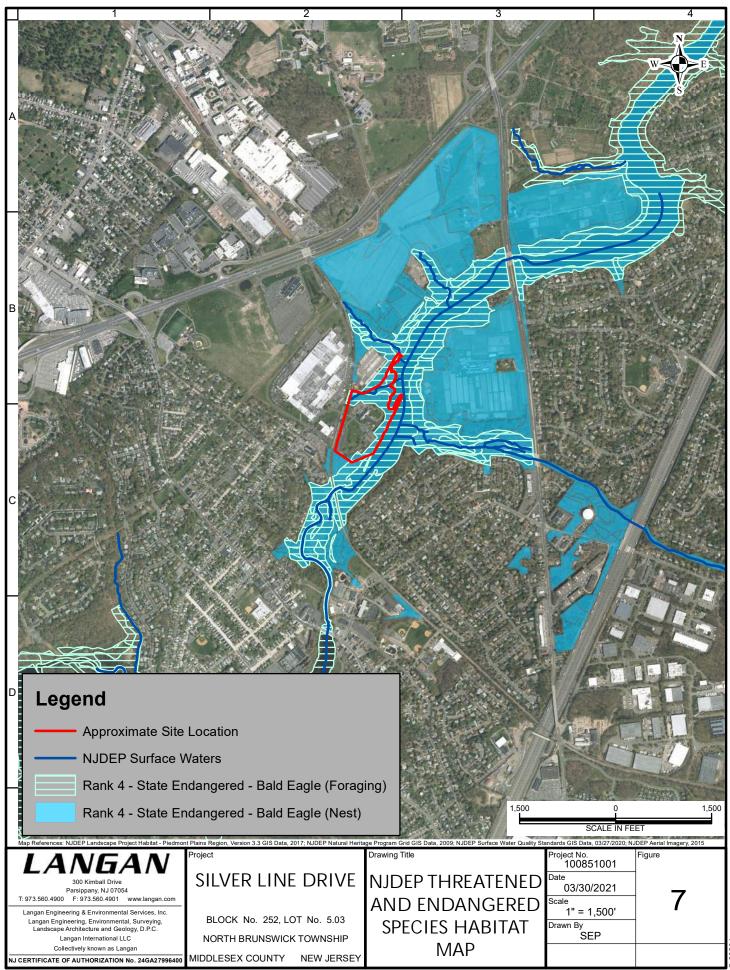
- 1. N.J.A.C. 7:8 New Jersey Department of Environmental Protection (NJDEP) Stormwater Management Rules;
- 2. Stormwater Control for non-Residential Major Development Ordinance of North Brunswick; and
- 3. Standards for Soil Erosion and Sediment Control in New Jersey.

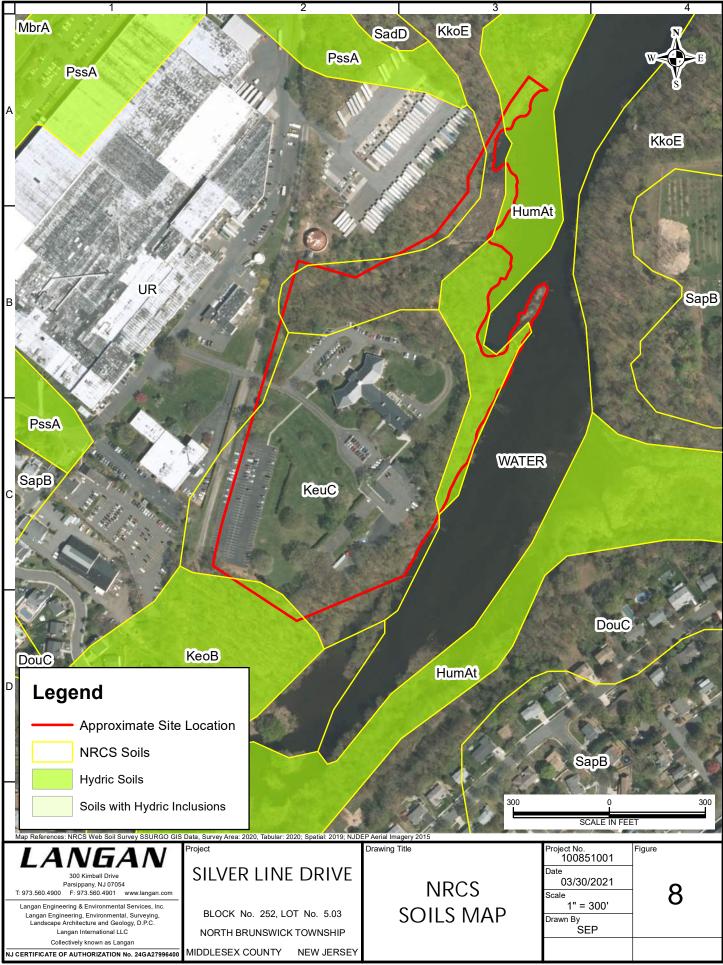

\\langan.com\data\PAR\data0\100851001\Project Data_Discipline\Site Civil\Reports\Stormwater Management Report\2023-05\Report Text.doc


FIGURES

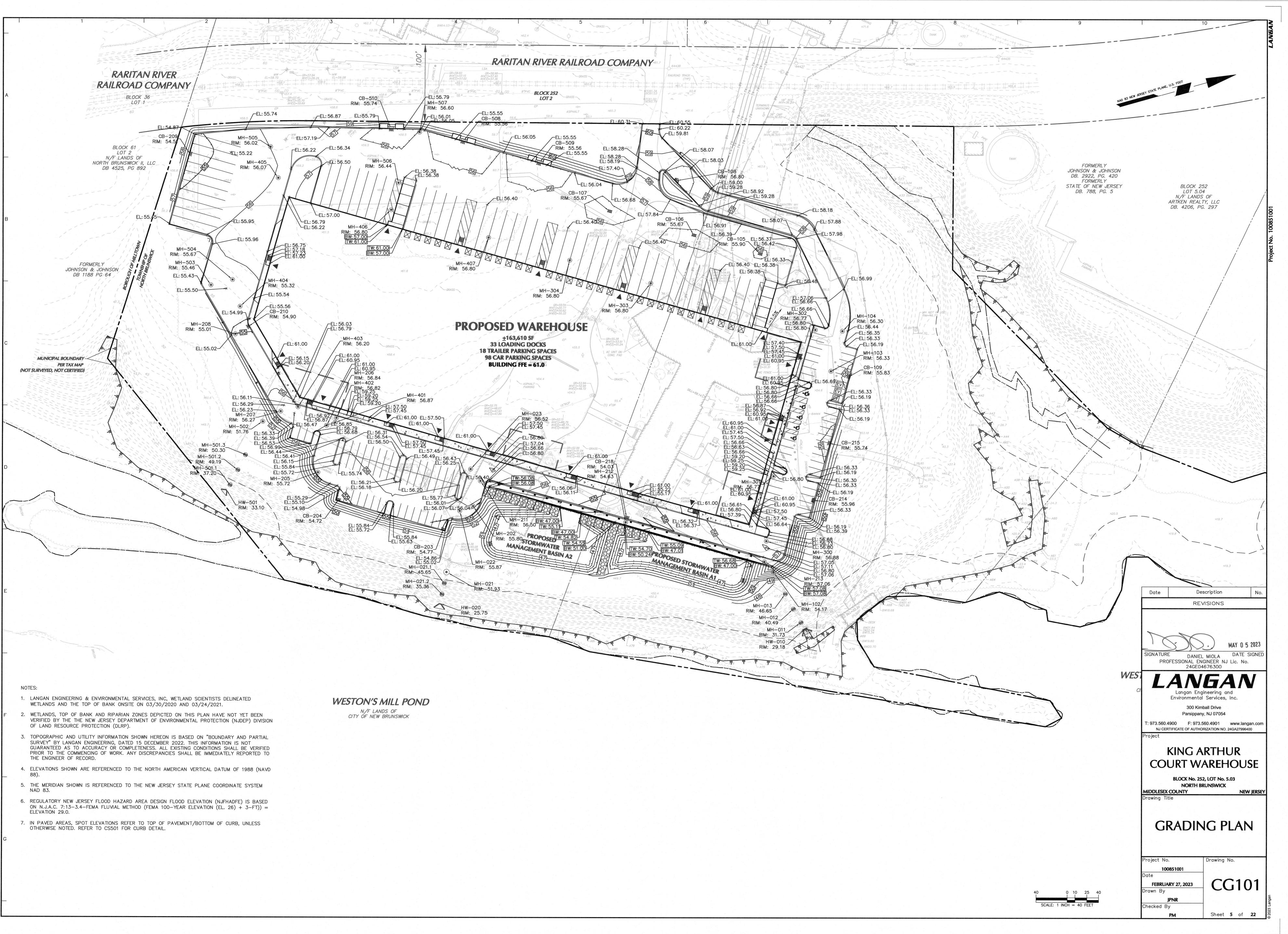


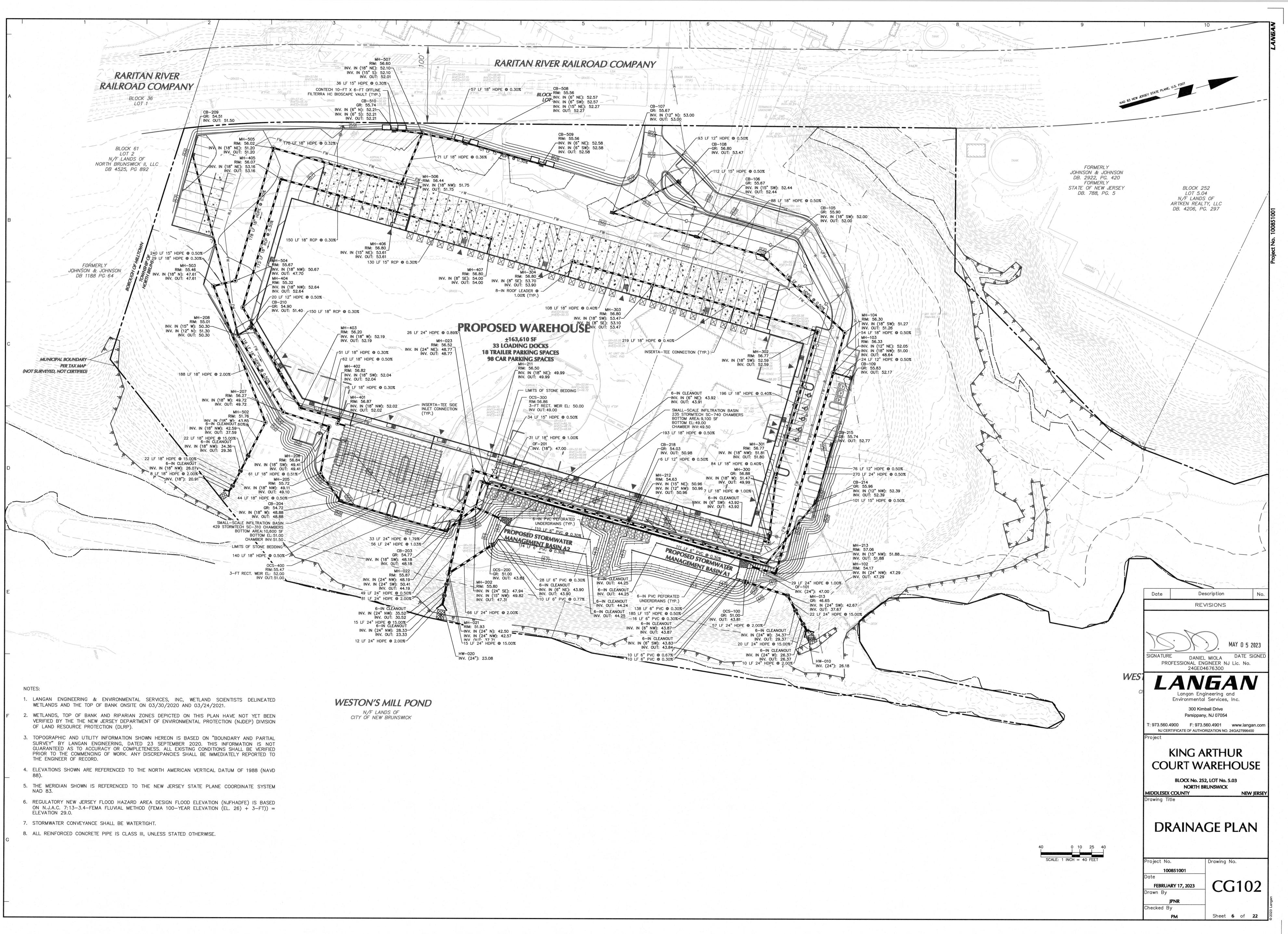

Path: \\langan.com\data\PAR\data0\100851001\Project Data\ArcGIS\MXD\Natural_Resource_Figures\Figure 5 - HUC14.mxd

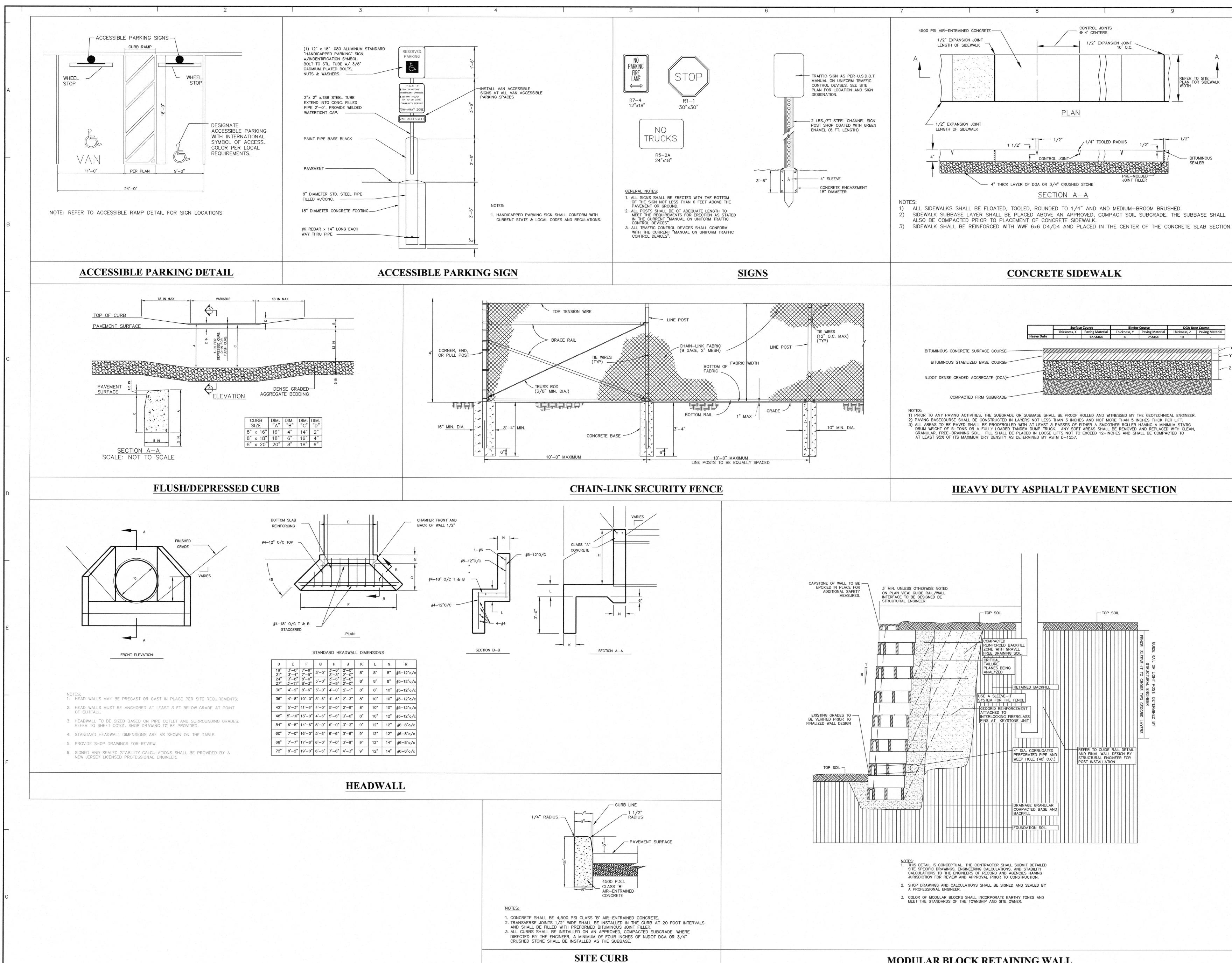




Path: \\langan.com\data\PAR\data0\100851001\Project Data\ArcGIS\MXD\Natural_Resource_Figures\Figure 7A - FEMA Effective.mxd

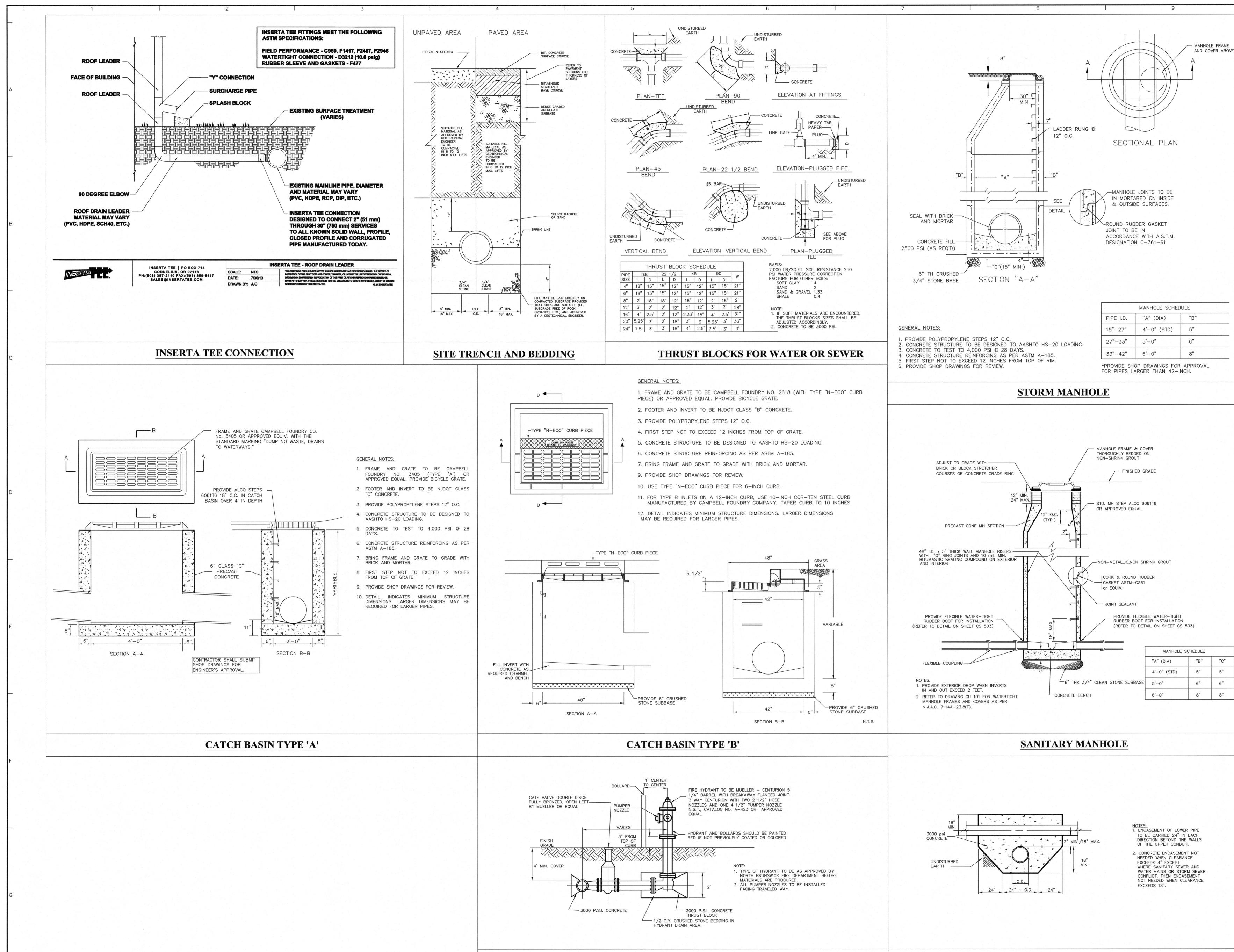




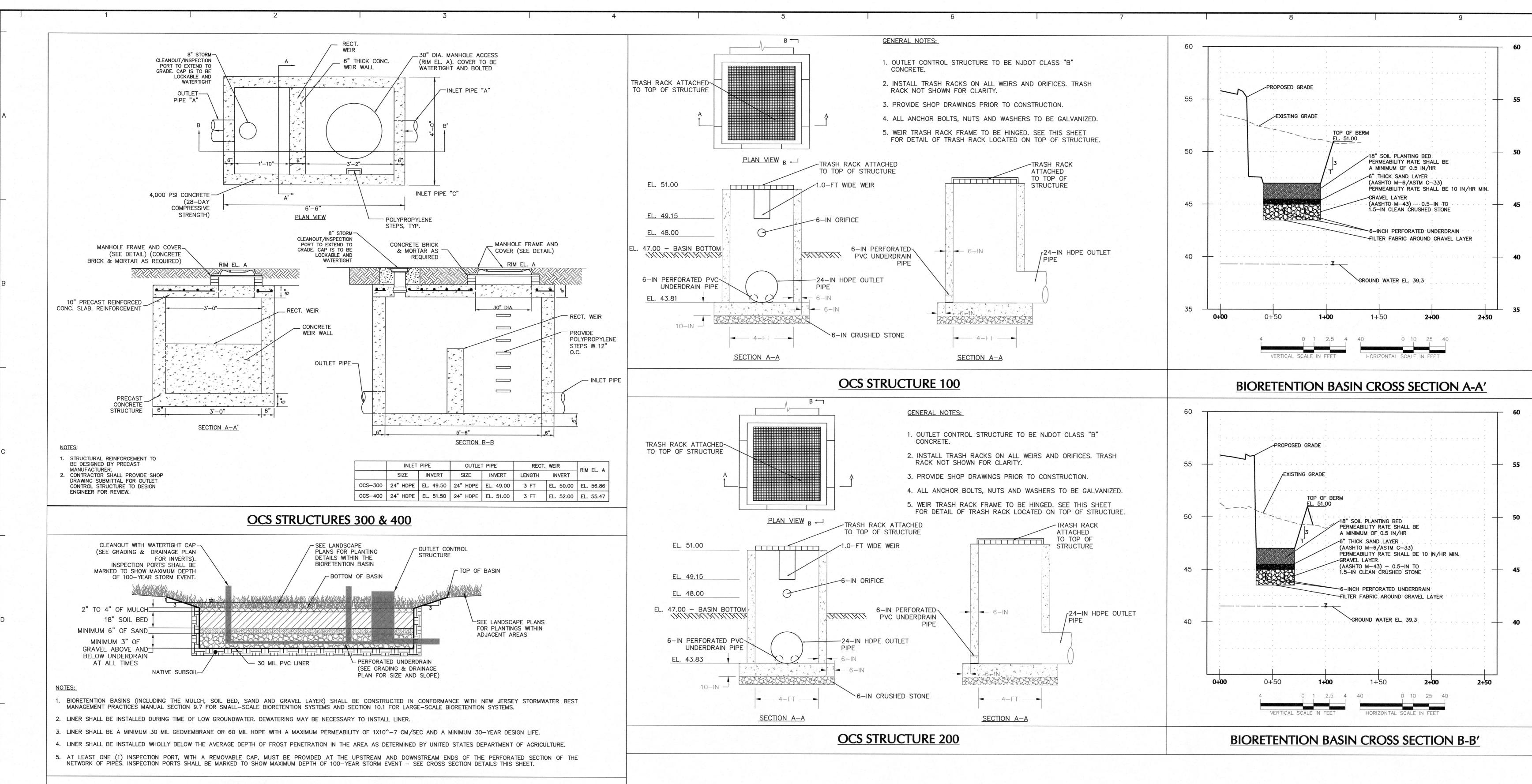


2020

DRAWINGS



MODULAR BLOCK RETAINING WALL


	LANGAN
	001
	100851
	Project No. 100851001
	Pro
Date Description No. REVISIONS	

FIRE HYDRANT

UTILITY CROSSING

Description Date REVISIONS MAY 0 5 2023 DATE SIGNE IGNATURE DANIEL MIOLA PROFESSIONAL ENGINEER NJ Lic. No. 24GE04676300 ANGAN Langan Engineering and Environmental Services, Inc. 300 Kimball Drive Parsippany, NJ 07054 T: 973.560.4900 F: 973.560.4901 www.langan.com NJ CERTIFICATE OF AUTHORIZATION NO. 24GA27996400 roiect **KING ARTHUR** COURT WAREHOUSE BLOCK No. 252, LOT No. 5.03 NORTH BRUNSWICK MIDDLESEX COUNTY NEW JERSEY Drawing Title SITE PLAN **DETAILS 2** Project No. Drawing No. 100851001)ate CS502 FEBRUARY 27, 2023)rawn By JPNR 1 0

BIORETENTION BASIN TYPICAL CROSS SECTION

Date Description REVISIONS MAY 0 5 2023 GNATURE DATE SIGNED DANIEL MIOLA PROFESSIONAL ENGINEER NJ Lic. No. 24GE04676300 LANGAN Langan Engineering and Environmental Services, Inc. 300 Kimball Drive Parsippany, NJ 07054 T: 973.560.4900 F: 973.560.4901 www.langan.com NJ CERTIFICATE OF AUTHORIZATION NO. 24GA27996400 Project **KING ARTHUR** COURT WAREHOUSE BLOCK No. 252, LOT No. 5.03 NORTH BRUNSWICK MIDDLESEX COUNTY **NEW JERSEY** Drawing Title SITE PLAN **DETAILS 3** Drawing No. Project No. 100851001 **CS503** FEBRUARY 27, 2023 Drawn By **JPNR** Checked By Sheet 21 of 22 PM

SC-	310 STORMTECH CHAMBER SPECIFICATIONS	ADS GEOSYNTHETICS 601T NON-
1.	CHAMBERS SHALL BE STORMTECH SC-310.	CLEAN CRUSHED,
2.	CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE OR POLYETHYLENE COPOLYMERS.	PERIMETER STONE (SEE NOTE 5)
3.	CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2922 (POLETHYLENE) OR ASTM F2418 (POLYPROPYLENE), "STANDARD SPECIFICATION FOR CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".	EXCAVATION WALL
4.	CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.	(CAN BE SLOPED OR VERTICAL)
5.	THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.	12" MIN
6.	CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.	90.7" (2304 mm) ACTUAL LENGTH
7.	 REQUIREMENTS FOR HANDLING AND INSTALLATION: TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS. TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 2". TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 400 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C). CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS. 	
8.	 ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS: THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER. THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE. THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2922 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN. 	15.6" (396 mm)
9.	CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY.	9.9"
NOTES	FOR CONSTRUCTION EQUIPMENT:	(251 mm)

- STORMTECH SC-310 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- THE USE OF CONSTRUCTION EQUIPMENT OVER SC-310 & SC-740 CHAMBERS IS LIMITED: NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS. NO RUBBER TIRED LOADERS, DUMP TRUCKS, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE". WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".

3. FULL 36" (900 mm) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO THE CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

SC-740 STORMTECH CHAMBER SPECIFICATIONS

1. CHAMBERS SHALL BE STORMTECH SC-740.

- CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE COPOLYMERS.
- CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- CHAMBERS SHALL BE DESIGNED. TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787. "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.
- 7. REQUIREMENTS FOR HANDLING AND INSTALLATION: • TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL,
 - INTERLOCKING STACKING LUGS. TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL
 - NOT BE LESS THAN 2". • TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 550 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- 8. ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE. THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD

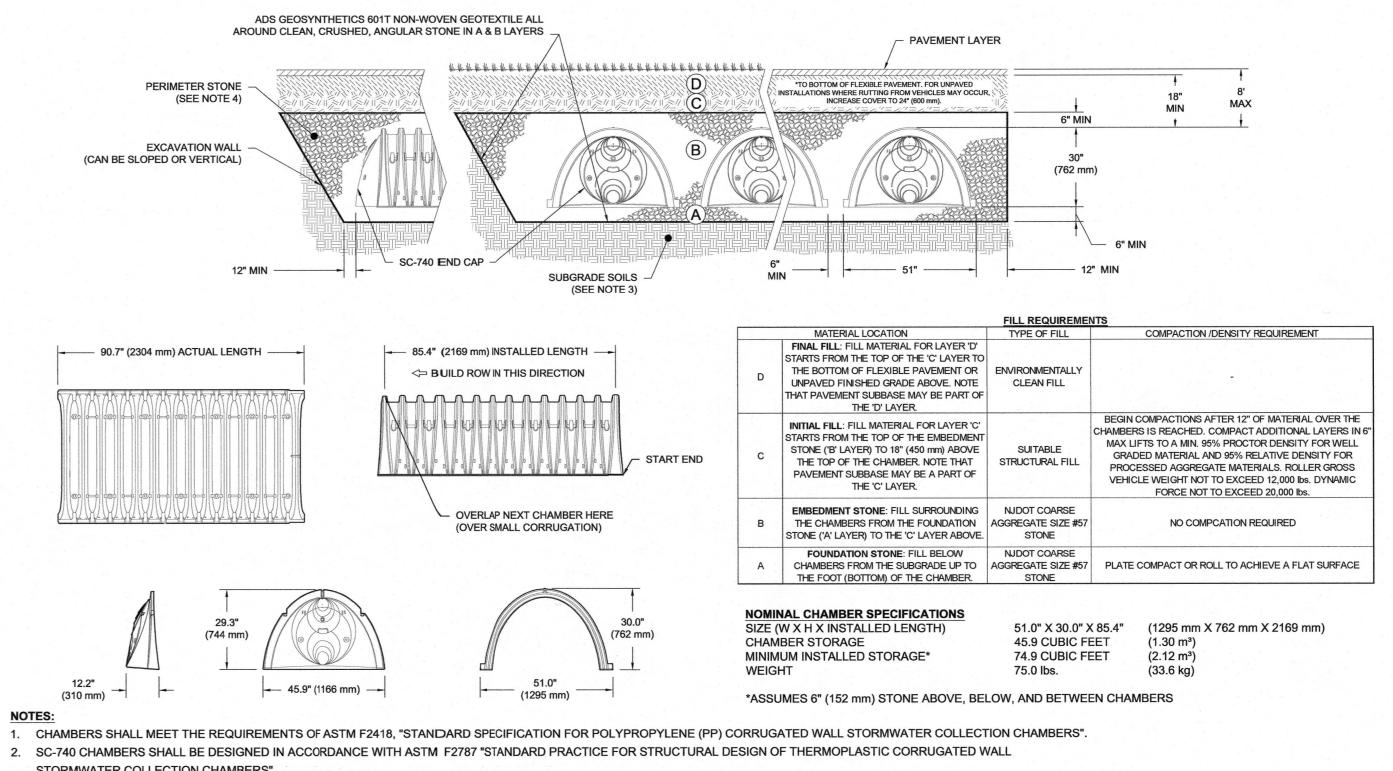
DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN. 9. CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY.

NOTES FOR CONSTRUCTION EQUIPMENT

1. STORMTECH SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".

- 2. THE USE OF CONSTRUCTION EQUIPMENT OVER SC-740 CHAMBERS IS LIMITED: NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
- NO RUBBER TIRED LOADERS, DUMP TRUCKS, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE". WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".
- 3. FULL 36" (900 mm) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

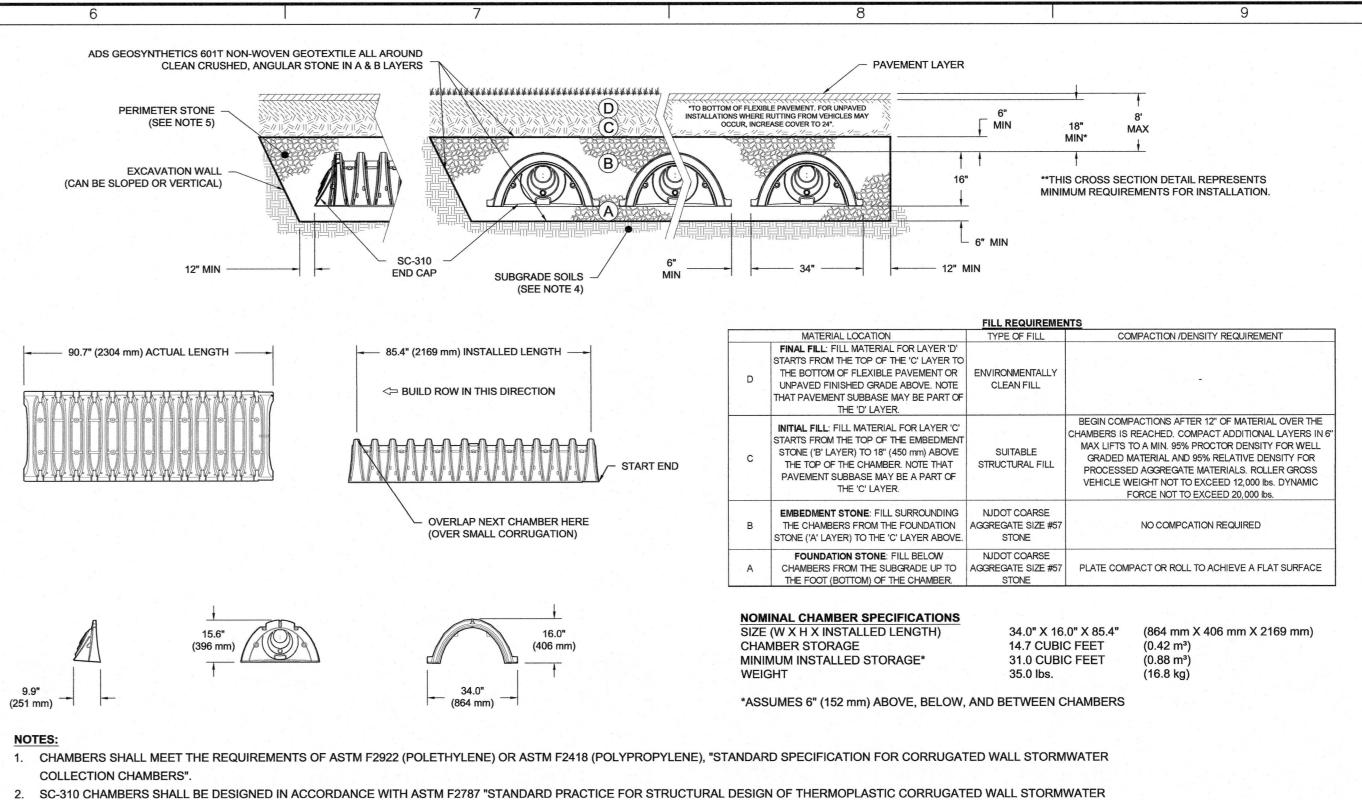
USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO THE CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.


CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT

NOTES:

COLLECTION CHAMBERS"

COLLECTION CHAMBERS".



NOTES:

- STORMWATER COLLECTION CHAMBERS".

- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION: • TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
- TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 550 LBS/FT/%. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C),

ADS STORMTECH SC-740 CHAMBERS

3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION

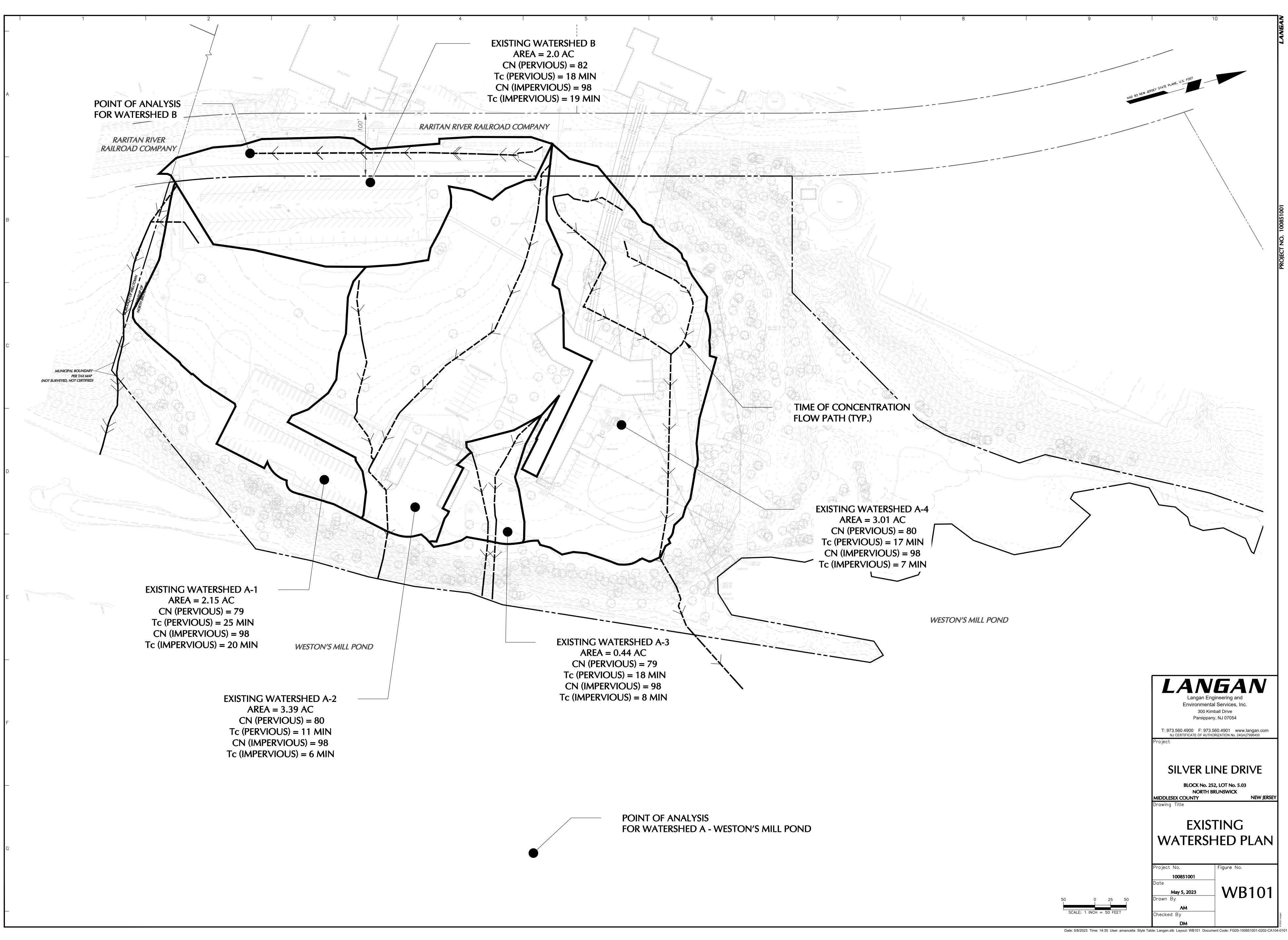
STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS. 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.

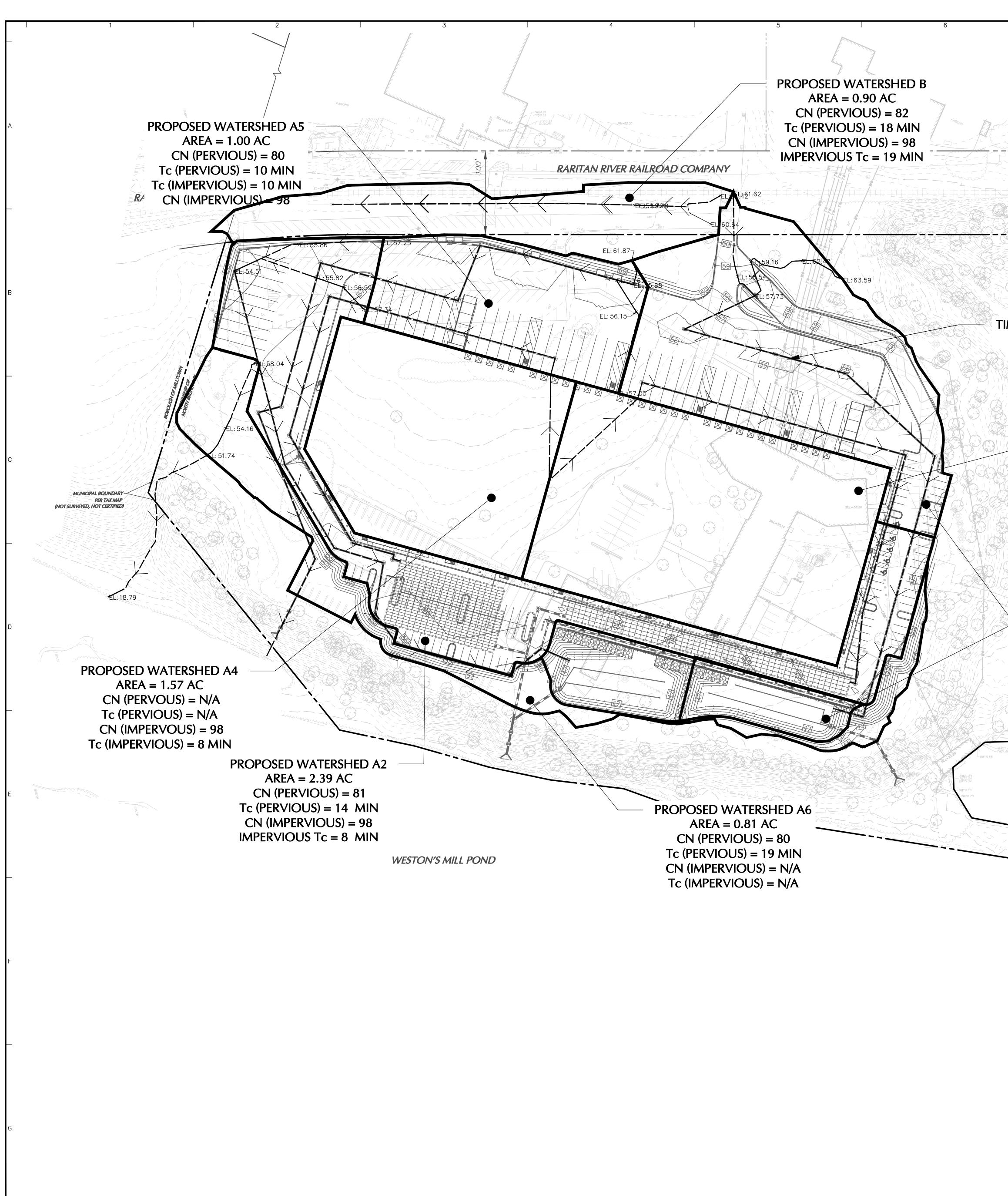
5. REQUIREMENTS FOR HANDLING AND INSTALLATION: TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.

TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 2".

• TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2922 SHALL BE GREATER THAN OR EQUAL TO 400 LBS/FT/%. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

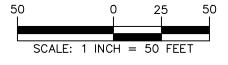
ADS STORMTECH SC-310 CHAMBERS

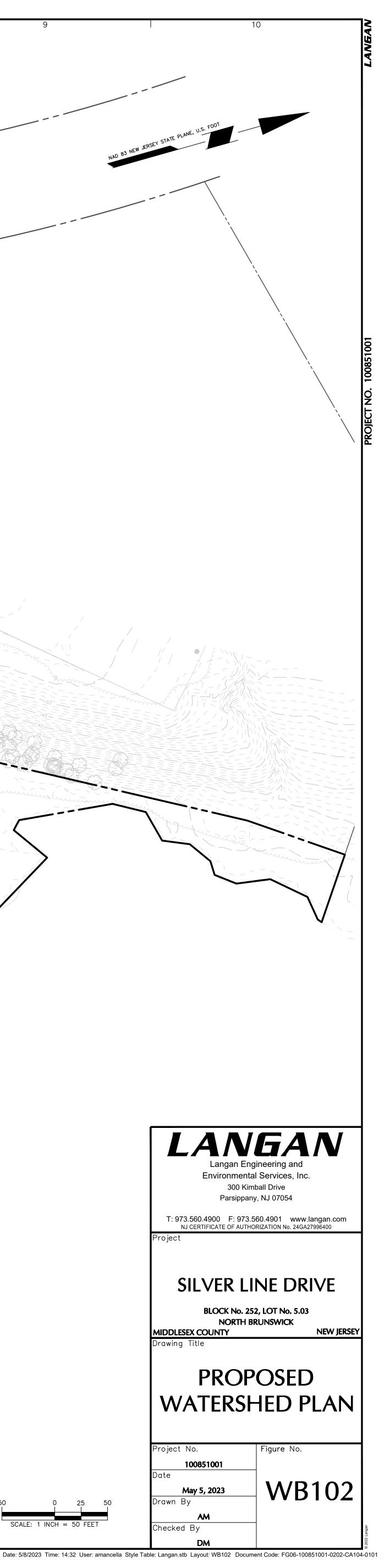

3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF


FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS. 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.

TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 2".

CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.


Description Date REVISIONS MAY 0 5 2023 IGNATURE DATE SIGNED DANIEL MIOLA PROFESSIONAL ENGINEER NJ Lic. No. 24GE04676300 ANGA Langan Engineering and Environmental Services, Inc. 300 Kimball Drive Parsippany, NJ 07054 T: 973.560.4900 F: 973.560.4901 www.langan.com NJ CERTIFICATE OF AUTHORIZATION NO. 24GA27996400 roject **KING ARTHUR COURT WAREHOUSE** BLOCK No. 252, LOT No. 5.03 NORTH BRUNSWICK MIDDLESEX COUNTY NEW JERSEY rawing Title SITE PLAN **DETAILS 4** roject No. Drawing No. 100851001 **CS504** FEBRUARY 27, 2023 awn By **JPNR** hecked By Sheet 22 of 22 PM



TIME OF CONCENTRATION FLOW PATH (TYP.) PROPOSED WATERSHED A3 AREA = 2.20 ACCN (PERVIOUS) = N/ATc (PERVIOUS) = N/ACN (IMPERVIOUS) = 98Tc (IMPERVIOUS) = 6 MINPROPOSED WATERSHED A1 AREA = 2.13 ACCN (PERVIOUS) = 80Tc (PERVIOUS) = 16 MINCN (IMPERVIOUS) = 98Tc (IMPERVIOUS) = 8 MIN

WESTON'S MILL POND

	Subwatershed Watershed		Total Area Open Space Area		Woods Area	Gravel Area	
			(AC)	(AC)	(AC)	(AC)	
Γ	CB-209	WS A2	0.56	0.08	0.00	0.00	
Г	CB-210	WS A2	0.32	0.00	0.00	0.00	
	CB-204	WS A2	0.28	0.02	0.00	0.00	
	CB-203	WS A2	0.28	0.01	0.00	0.00	
	CB-109	WS A1	0.43	0.12	0.00	0.00	
	CB-214	WS A2	0.16	0.00	0.00	0.00	
Γ	CB-215	WS A2	0.14	0.01	0.00	0.00	
	CB-216	WS A2	0.30	0.00	0.00	0.00	
	F1	WS A5	0.33	0.02	0.00	0.00	
_	F2	WS A5	0.33	0.02	0.00	0.00	
	F3	WS A5	0.34	0.04	0.00	0.00	
_	CB-105	WS A1	0.33	0.10	0.00	0.00	
Г	CB-106	WS A1	0.38	0.01	0.00	0.00	
	CB-107	W\$ A1	0.45	0.12	0.00	0.00	
	CB-108	WS A1	0.28	0.19	0.00	0.00	
	Roof Area 1	WS A3	2.20	0.00	0.00	0.00	
	Roof Area 2	WS A4	1.57	0.00	0.00	0.00	

APPENDIX A

Pre-Construction Hydrologic Analysis

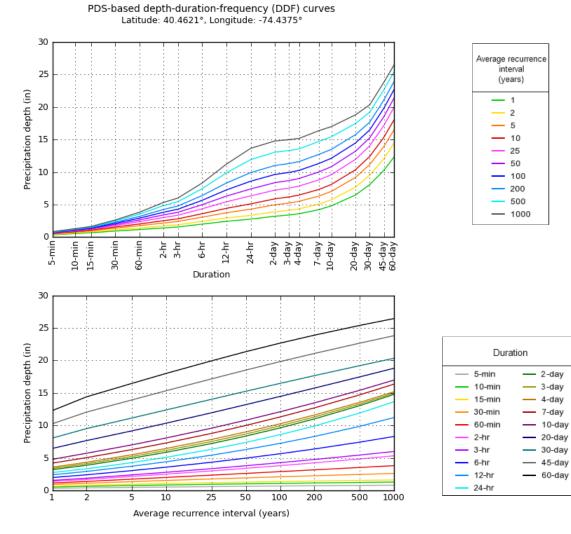
POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular


PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration	Average recurrence interval (years)									
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.334 (0.303-0.369)	0.398 (0.360-0.440)	0.472 (0.426-0.521)	0.526 (0.474-0.580)	0.591 (0.531-0.652)	0.638 (0.569-0.702)	0.684 (0.608-0.754)	0.726 (0.642-0.802)	0.778 (0.681-0.861)	0.817 (0.710-0.907)
10-min	0.534 (0.483-0.590)	0.637 (0.576-0.703)	0.756 (0.682-0.835)	0.841 (0.758-0.928)	0.942 (0.846-1.04)	1.01 (0.906-1.12)	1.09 (0.966-1.20)	1.15 (1.02-1.27)	1.23 (1.08-1.36)	1.29 (1.12-1.43)
15-min	0.667 (0.604-0.738)	0.800 (0.724-0.884)	0.956 (0.863-1.06)	1.06 (0.959-1.17)	1.19 (1.07-1.32)	1.29 (1.15-1.42)	1.37 (1.22-1.52)	1.45 (1.28-1.60)	1.55 (1.36-1.72)	1.62 (1.40-1.79)
30-min	0.915 (0.828-1.01)	1.11 (1.00-1.22)	1.36 (1.23-1.50)	1.54 (1.39-1.70)	1.77 (1.59-1.95)	1.94 (1.73-2.13)	2.10 (1.87-2.32)	2.26 (2.00-2.50)	2.47 (2.16-2.73)	2.62 (2.27-2.90)
60-min	1.14 (1.03-1.26)	1.39 (1.25-1.53)	1.74 (1.57-1.92)	2.01 (1.81-2.22)	2.36 (2.11-2.60)	2.62 (2.34-2.89)	2.90 (2.58-3.20)	3.17 (2.80-3.50)	3.54 (3.10-3.92)	3.82 (3.32-4.24)
2-hr	1.40 (1.25-1.55)	1.70 (1.53-1.89)	2.16 (1.94-2.40)	2.51 (2.25-2.79)	3.00 (2.68-3.32)	3.41 (3.02-3.77)	3.82 (3.36-4.22)	4.25 (3.71-4.71)	4.85 (4.19-5.40)	5.33 (4.56-5.94)
3-hr	1.55 (1.39-1.73)	1.89 (1.70-2.11)	2.40 (2.16-2.67)	2.80 (2.51-3.11)	3.35 (2.99-3.72)	3.81 (3.37-4.22)	4.27 (3.76-4.74)	4.76 (4.16-5.29)	5.45 (4.69-6.06)	5.99 (5.11-6.70)
6-hr	1.98 (1.78-2.22)	2.41 (2.17-2.69)	3.06 (2.74-3.40)	3.58 (3.20-3.97)	4.34 (3.84-4.80)	4.97 (4.37-5.49)	5.65 (4.92-6.24)	6.38 (5.50-7.04)	7.43 (6.31-8.22)	8.31 (6.97-9.20)
12-hr	2.41 (2.16-2.72)	2.93 (2.61-3.29)	3.73 (3.32-4.19)	4.41 (3.91-4.94)	5.42 (4.77-6.05)	6.30 (5.50-7.02)	7.25 (6.26-8.07)	8.30 (7.08-9.26)	9.87 (8.26-11.0)	11.2 (9.24-12.5)
24-hr	2.75 (2.53-3.02)	3.34 (3.06-3.67)	4.28 (3.92-4.70)	5.10 (4.65-5.59)	6.33 (5.73-6.92)	7.39 (6.65-8.08)	8.58 (7.65-9.38)	9.91 (8.73-10.9)	11.9 (10.3-13.1)	13.6 (11.6-15.0)
2-day	3.20 (2.92-3.53)	3.87 (3.54-4.28)	4.96 (4.52-5.48)	5.87 (5.33-6.48)	7.21 (6.51-7.95)	8.37 (7.50-9.21)	9.62 (8.56-10.6)	11.0 (9.67-12.2)	13.0 (11.3-14.5)	14.8 (12.6-16.4)
3-day	3.39 (3.10-3.73)	4.10 (3.76-4.52)	5.23 (4.78-5.76)	6.17 (5.61-6.78)	7.53 (6.82-8.27)	8.69 (7.81-9.54)	9.94 (8.87-10.9)	11.3 (9.99-12.4)	13.3 (11.6-14.7)	15.0 (12.9-16.6)
4-day	3.58 (3.28-3.93)	4.34 (3.98-4.76)	5.50 (5.03-6.03)	6.46 (5.89-7.08)	7.85 (7.13-8.59)	9.01 (8.13-9.87)	10.3 (9.19-11.2)	11.6 (10.3-12.7)	13.6 (11.9-14.9)	15.2 (13.1-16.8)
7-day	4.21 (3.90-4.56)	5.05 (4.68-5.48)	6.29 (5.81-6.83)	7.31 (6.75-7.93)	8.78 (8.05-9.52)	10.0 (9.11-10.8)	11.3 (10.2-12.3)	12.7 (11.4-13.8)	14.7 (13.0-16.1)	16.4 (14.3-18.0)
10-day	4.79 (4.47-5.16)	5.73 (5.34-6.17)	7.02 (6.53-7.56)	8.08 (7.50-8.70)	9.58 (8.84-10.3)	10.8 (9.92-11.6)	12.1 (11.0-13.1)	13.5 (12.2-14.6)	15.4 (13.8-16.8)	17.0 (15.0-18.6)
20-day	6.47 (6.10-6.87)	7.68 (7.24-8.16)	9.17 (8.63-9.74)	10.4 (9.73-11.0)	12.0 (11.2-12.7)	13.2 (12.3-14.0)	14.5 (13.4-15.4)	15.8 (14.5-16.8)	17.5 (16.0-18.7)	18.8 (17.1-20.2)
30-day	8.06 (7.65-8.49)	9.52 (9.04-10.0)	11.1 (10.6-11.7)	12.4 (11.7-13.0)	14.0 (13.2-14.8)	15.3 (14.4-16.1)	16.5 (15.5-17.4)	17.7 (16.5-18.7)	19.2 (17.8-20.4)	20.3 (18.8-21.7)
45-day	10.3 (9.77-10.8)	12.1 (11.5-12.6)	13.9 (13.3-14.6)	15.3 (14.6-16.1)	17.2 (16.3-18.0)	18.5 (17.5-19.4)	19.8 (18.7-20.8)	21.1 (19.8-22.2)	22.7 (21.2-23.9)	23.8 (22.2-25.2)
60-day	12.3 (11.7-12.8)	14.4 (13.8-15.1)	16.5 (15.8-17.2)	18.0 (17.2-18.8)	19.9 (19.0-20.8)	21.4 (20.3-22.3)	22.7 (21.5-23.7)	23.9 (22.6-25.0)	25.4 (23.9-26.7)	26.4 (24.8-27.9)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top


NOAA Atlas 14, Volume 2, Version 3

Created (GMT): Mon Feb 13 17:40:13 2023

Back to Top

Maps & aerials

Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

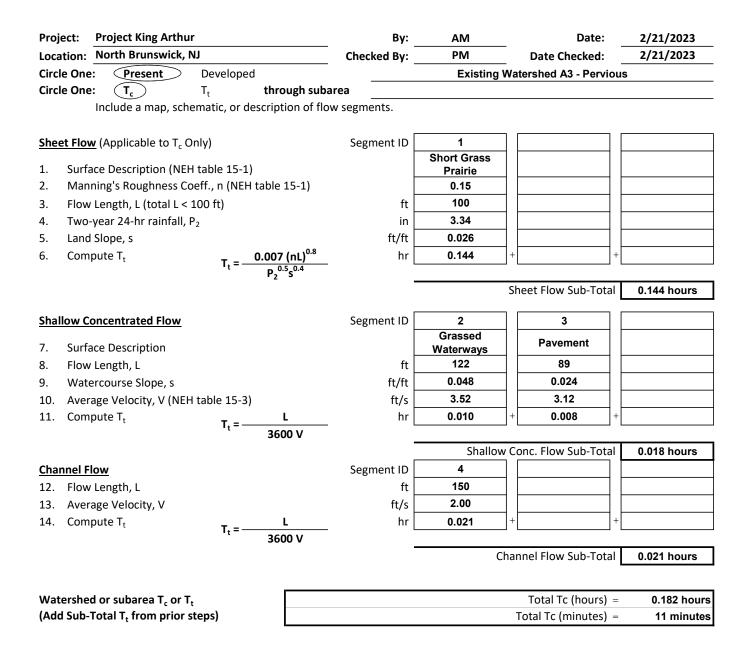
EXISTING WATERSHED CALCULATIONS

Project King Arthur

North Brunswick, NJ 100851001

Watershed	Total Area	Landscaped Area	Woods Area	Gravel Area	Impervious Area	Curve Number, CN (Weighted)
	(AC)	(AC)	(AC)	(AC)	(AC)	ch (Weighted)
WS A1	2.15	1.16	0.48	0.00	0.51	84
WS A2	3.39	1.85	0.17	0.00	1.37	87
WS A3	0.44	0.30	0.08	0.00	0.06	82
WS A4	3.01	1.47	0.24	0.00	1.30	88
WS B	2.00	0.64	0.02	0.15	1.19	92
Total	10.99	5.42	0.99	0.15	4.43	83

CN-Values	
CN-Values	80
Woods Area	77
Gravel Area	91
Gravel Area	98


*CN Values from Table 2-2, TR-55 Manual - Urban Hydrology for Small Watersheds

Project: Project King Arthur	By:	AM	Date:	2/21/2023
Location: North Brunswick, NJ	Checked By:	PM	Date Checked:	2/21/2023
Circle One: Present Developed		Existing	Watershed A1 - Pervious	
Circle One: T _c T _t through suba	rea			
Include a map, schematic, or description of flow	w segments.			
				1
<u>Sheet Flow</u> (Applicable to T _c Only)	Segment ID	1		
1. Surface Description (NEH table 15-1)		Woods Light Underbrush		
2. Manning's Roughness Coeff., n (NEH table 15-1)		0.40		
3. Flow Length, L (total L < 100 ft)	ft	100		
4. Two-year 24-hr rainfall, P ₂	in	3.36		
5. Land Slope, s	ft/ft	0.029		
6. Compute T_t $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$	hr	0.301	+ +	
$P_2^{0.5} s^{0.4}$				
			Sheet Flow Sub-Total	0.301 hours
Shallow Concentrated Flow	Segment ID	2		
	Segment ib	Heavy Ground	┥┟────┤┟	
7. Surface Description		Litter		
8. Flow Length, L	ft	354		
9. Watercourse Slope, s	ft/ft	0.105		
10. Average Velocity, V (NEH table 15-3)	ft/s	0.82		
11. Compute T _t T – L	hr	0.120	+ +	
11. Compute T_t $T_t = \frac{L}{3600 V}$				
		Shallov	w Conc. Flow Sub-Total	0.120 hours
Watershed or subarea T _c or T _t			Total Tc (hours) =	0.422 hours
(Add Sub-Total T _t from prior steps)			Total Tc (minutes) =	25 minutes

Project: Project King Arthur	By:	AM	Date:	2/21/2023
Location: North Brunswick, NJ	Checked By:	PM	Date Checked:	2/21/2023
Circle One: Present Developed		Existing Wat	tershed A2 - Impervio	us
Circle One: T _c T _t through suba	irea			
Include a map, schematic, or description of flo	w segments.			
<u>Sheet Flow</u> (Applicable to T _c Only)	Segment ID	1	2	
1. Surface Description (NEH table 15-1)		Smooth Surfaces	Woods Light Underbrush	
2. Manning's Roughness Coeff., n (NEH table 15-1)		0.011	0.40	
3. Flow Length, L (total L < 100 ft)	ft	30	70	
4. Two-year 24-hr rainfall, P ₂	in	3.36	3.36	
5. Land Slope, s	ft/ft	0.027	0.036	
6. Compute T_t $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$	hr	0.007 +	0.208 +	
$P_2^{0.5}s^{0.4}$				
		S	heet Flow Sub-Total	0.215 hours
			· · · · · · · · · · · · · · · · · · ·	
Shallow Concentrated Flow	Segment ID	3		
7. Surface Description		Heavy Ground Litter		
8. Flow Length, L	ft	364		
9. Watercourse Slope, s	ft/ft	0.106		
10. Average Velocity, V (NEH table 15-3)	ft/s	0.82		
	hr	0.124 +	+	
11. Compute T_t $T_t = \frac{L}{3600 V}$		L		
		Shallow C	Conc. Flow Sub-Total	0.124 hours
Watershed or subarea T _c or T _t			Total Tc (hours) =	0.339 hours
(Add Sub-Total T _t from prior steps)			Total Tc (minutes) =	20 minutes

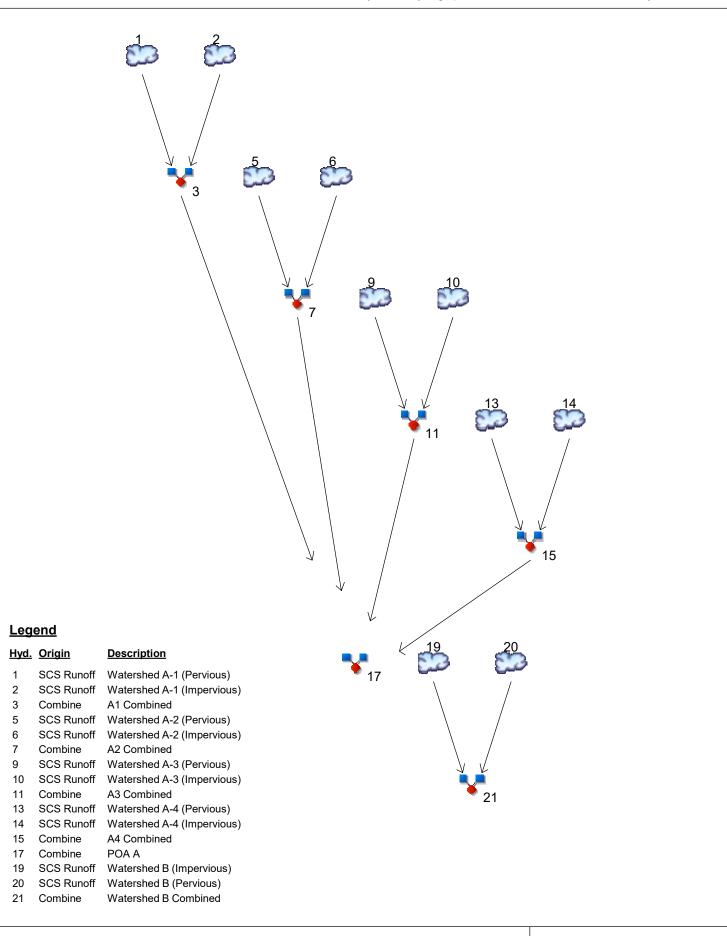
Project: Project King Arthur	By:	AM	Date:	2/21/2023
Location: North Brunswick, NJ	Checked By:	РМ	Date Checked:	2/21/2023
Circle One: Present Developed		Existing	 Watershed A2 - Pervious	;
Circle One: T _c T _t through suba	irea			
Include a map, schematic, or description of flow	w segments.			
<u>Sheet Flow</u> (Applicable to T _c Only)	Segment ID	1		
1. Surface Description (NEH table 15-1)		Woods Light Underbrush		
2. Manning's Roughness Coeff., n (NEH table 15-1)		0.40		
3. Flow Length, L (total L < 100 ft)	ft	100		
4. Two-year 24-hr rainfall, P ₂	in	3.36		
5. Land Slope, s	ft/ft	0.031		
6. Compute T_t $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} S^{0.4}}$	hr	0.293	+ +	
$P_2^{0.5}s^{0.4}$				
			Sheet Flow Sub-Total	0.293 hours
		_	-]
Shallow Concentrated Flow	Segment ID	2	┥┝────┤┝	
7. Surface Description		Heavy Ground Litter		
8. Flow Length, L	ft	354		
9. Watercourse Slope, s	ft/ft	0.105		
10. Average Velocity, V (NEH table 15-3)	ft/s	0.81		
	, hr	0.121	+ +	
11. Compute T_t $T_t = \frac{L}{3600 V}$				
		Shallov	w Conc. Flow Sub-Total	0.121 hours
Watershed or subarea T _c or T _t			Total Tc (hours) =	0.414 hours
(Add Sub-Total T _t from prior steps)			Total Tc (minutes) =	25 minutes

Location: North Brunswick, NJ Checked By: PM Date Checked: $2/21/2023$ Circle One: T_1 through subarea Existing Watershed A3 - Impervious Circle One: T_1 through subarea Existing Watershed A3 - Impervious Include a map, schematic, or description of flow segments. Segment ID 1 Image: Segment ID 1 Sheet Flow (Applicable to T _c Only) Segment ID 1 Image: Segment ID 1 Image: Segment ID 1 1. Surface Description (NEH table 15-1) Image: Segment ID 1 Image: Segme: Segm	Project: Project King Arthur	By:	AM	Date:	2/21/2023
Circle One: T, through subarea Include a map, schematic, or description of flow segments. Sheet Flow (Applicable to T _c Only) 1. Surface Description (NEH table 15-1) 2. Manning's Roughness Coeff., n (NEH table 15-1) 3. Flow Length, L (total L < 100 ft) 4. Two-year 24-hr rainfall, P ₂ 5. Land Slope, s 6. Compute T ₁ $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} S^{0.4}}$ Sheet Flow Sub-Total 0.020 hours Sheet Flow Sub-Total 0.007 hours	Location: North Brunswick, NJ	Checked By:	PM	Date Checked:	2/21/2023
Include a map, schematic, or description of flow segments. Sheet Flow (Applicable to T _c Only) 1. Surface Description (NEH table 15-1) 2. Manning's Roughness Coeff., n (NEH table 15-1) 3. Flow Length, L (total L < 100 ft) 4. Two-year 24-hr rainfall, P ₂ 5. Land Slope, s 6. Compute T ₁ $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} S^{0.4}}$ Sheet Flow Sub-Total O.007 (nL) ^{0.8} Pawement ID 7. Surface Description Sheet Flow Sub-Total O.007 (nL) ^{0.8} Pawement ID 7. Surface Description Surface Description Right, L O.007 (nL) ^{0.8} To Surface Description Right, L Number T ₁ T ₁ = L Matercourse Slope, s Segment ID Segment ID Shallow Conc. Flow Sub-Total O.007 *					

Project: Project King Arthur	By:	AM	Date:	2/21/2023
Location: North Brunswick, NJ	Checked By:	PM	Date Checked:	2/21/2023
Circle One: Present Developed		Existing Wat	ershed A4 - Impervio	us
Circle One: T _c T _t through suba	irea			
Include a map, schematic, or description of flo	w segments.			
<u>Sheet Flow</u> (Applicable to T _c Only)	Segment ID	1	2	
1. Surface Description (NEH table 15-1)		Smooth Surfaces	Short Grass Prairie	
2. Manning's Roughness Coeff., n (NEH table 15-1)		0.011	0.15	
3. Flow Length, L (total L < 100 ft)	ft	25	75	
4. Two-year 24-hr rainfall, P ₂	in	3.34	3.34	
5. Land Slope, s	ft/ft	0.029	0.030	
6. Compute T_t $T_t = \frac{0.007 (nL)^{0.8}}{P_0^{0.5} s^{0.4}}$	hr	0.006 +	0.108 +	
$P_2^{0.5}s^{0.4}$				
		S	heet Flow Sub-Total	0.113 hours
Shallow Concentrated Flow	Segment ID	3		
7. Surface Description		Heavy Ground Litter		
8. Flow Length, L	ft	127		
9. Watercourse Slope, s	ft/ft	0.256		
10. Average Velocity, V (NEH table 15-3)	ft/s	1.27		
	hr	0.028 +	+	
11. Compute T_t $T_t = \frac{L}{3600 V}$				
		Shallow C	onc. Flow Sub-Total	0.028 hours
Watershed or subarea T_c or T_t			Total Tc (hours) =	0.141 hours
(Add Sub-Total T_t from prior steps)			Total Tc (minutes) =	8 minutes
				o minutes

Project: Project King Arthur	By:	AM	Date:	2/21/2023
Location: North Brunswick, NJ	Checked By:	PM	Date Checked:	2/21/2023
Circle One: Present Developed		Existing \	- Watershed A4 - Pervious	6
Circle One: T _c T _t through suba	irea			
Include a map, schematic, or description of flo	w segments.			
	-			
Sheet Flow (Applicable to T _c Only)	Segment ID	1	2	3
1. Surface Description (NEH table 15-1)		Short Grass Prairie	Smooth Surfaces	Short Grass Prairie
2. Manning's Roughness Coeff., n (NEH table 15-1)		0.15	0.011	0.15
3. Flow Length, L (total L < 100 ft)	ft	17	9	74
4. Two-year 24-hr rainfall, P ₂	in	3.34	3.34	3.34
5. Land Slope, s	ft/ft	0.008	0.017	0.025
6. Compute T_t $T_t = \frac{0.007 (nL)^{0.8}}{P_0^{0.5} S^{0.4}}$	hr	0.055	+ 0.003 +	0.115
$P_2^{0.5}s^{0.4}$	-			
	-		Sheet Flow Sub-Total	0.173 hours
	Г			
Shallow Concentrated Flow	Segment ID	4	5	
7. Surface Description		Grassed Waterways	Heavy Ground Litter	
8. Flow Length, L	ft	87	133	
9. Watercourse Slope, s	ft/ft	0.005	0.017	
10. Average Velocity, V (NEH table 15-3)	ft/s	1.11	0.33	
	hr	0.022	+ 0.113 +	
11. Compute T_t $T_t = \frac{L}{3600 V}$	L			
	-	Shallow	Conc. Flow Sub-Total	0.134 hours
			-	
Watershed or subarea T _c or T _t			Total Tc (hours) =	0.308 hours
(Add Sub-Total T _t from prior steps)			Total Tc (minutes) =	18 minutes

Project: Project King Arthur	By:	AM	Date:	2/21/2023
Location: North Brunswick, NJ	Checked By:	PM	Date Checked:	2/21/2023
Circle One: Present Developed		Existing Wa	atershed A5 - Imperviou	IS
Circle One: T _c T _t through suba	area			
Include a map, schematic, or description of flo	w segments.			
<u>Sheet Flow</u> (Applicable to T _c Only)	Segment ID	1		
1. Surface Description (NEH table 15-1)		Smooth Surfaces		
2. Manning's Roughness Coeff., n (NEH table 15-1)		0.011		
3. Flow Length, L (total L < 100 ft)	ft	100		
4. Two-year 24-hr rainfall, P_2	in	3.34		
5. Land Slope, s	ft/ft	0.019		
6. Compute T_t $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$	hr	0.020	+ +	
$P_{1} = \frac{1}{P_{2}^{0.5} s^{0.4}}$				
			Sheet Flow Sub-Total	0.020 hours
	6			
Shallow Concentrated Flow	Segment ID	2	4 Heavy Ground	
7. Surface Description		Pavement	Litter	
8. Flow Length, L	ft	150	91	
9. Watercourse Slope, s	ft/ft	0.016	0.079	
10. Average Velocity, V (NEH table 15-3)	ft/s	2.57	0.71	
11. Compute T_t $T_t = \frac{L}{3600 V}$	hr	0.016	+ 0.036 +	
3600 V				
		Shallow	Conc. Flow Sub-Total	0.052 hours
Channel Flow	Segment ID	3		
12. Flow Length, L	ft	378		
13. Average Velocity, V	ft/s	2.00		
	hr	0.053	+ +	
14. Compute T_t $T_t = \frac{L}{3600 V}$				
		Ch	annel Flow Sub-Total	0.053 hours
Watershed or subarea T _c or T _t			Total Tc (hours) =	0.125 hours
(Add Sub-Total T _t from prior steps)			Total Tc (minutes) =	7 minutes
			. ,	


Location: North Brunswick, NJ Checked By: PM Date Checked: $2/21/2023$ Circle One: T_c T_t through subarea Existing Watershed A5 - Pervious Circle One: T_c T_t through subarea Existing Watershed A5 - Pervious Include a map, schematic, or description of flow segments. Steet Flow (Applicable to T_c Only) Segment ID 1 1. Surface Description (NEH table 15-1) Segment ID 1 Short Grass Prairie 2. Manning's Roughness Coeff., n (NEH table 15-1) in 3.34	Project: Project King Arthur	By:	AM	Date:	2/21/2023	
Circle One: T _t through subarea Include a map, schematic, or description of flow segments. Sheet Flow (Applicable to T _t Only) 1. Surface Description (NEH table 15-1) 2. Manning's Roughness Coeff., n (NEH table 15-1) 3. Flow Length, L (total L < 100 ft) 4. Two-year 24-hr rainfall, P ₂ 5. Land Slope, s 6. Compute T _t $T_t = \frac{0.007 (n1)^{0.8}}{P_2^{0.5} S^{0.4}}$ ft/ft 0.024 ft 0.149 staface Description 8. Flow Length, L 7. Surface Description 8. Flow Length, L 9. Segment ID 2 3 7. Surface Description 8. Flow Length, L 9. Watercourse Slope, s 10. Average Velocity, V (NEH table 15-3) 11. Compute T _t T _t = L 3600 V Segment ID 4	Location: North Brunswick, NJ	Checked By:	РМ	Date Checked:	2/21/2023	
Include a map, schematic, or description of flow segments. Sheet Flow (Applicable to T _c Only) 1. Surface Description (NEH table 15-1) 2. Manning's Roughness Coeff., n (NEH table 15-1) 3. Flow Length, L (total L < 100 ft) 4. Two-year 24-hr rainfall, P ₂ 5. Land Slope, s 6. Compute T _t $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} S^{0.4}}$ hr 7. Surface Description 8. Flow Length, L 9. Watercourse Slope, s 10. Average Velocity, V (NEH table 15-3) 11. Compute T _t $T_t = \frac{L}{3600 V}$ Channel Flow 14. Compute T _t $T_t = \frac{L}{3600 V}$ Segment ID 15. Land Slope, s 16. Compute T _t T _t = $\frac{L}{3600 V}$ Channel Flow Sub-Total 0.085 hours 16. Compute T _t T _t = $\frac{L}{3600 V}$ Segment ID 17. Surface Description 18. Flow Length, L 19. Watercourse Slope, s 10. Average Velocity, V (NEH table 15-3) 10. Average Velocity, V (NEH table 15-3) 11. Compute T _t T _t = $\frac{L}{3600 V}$ Segment ID 12. Flow Length, L 13. Average Velocity, V 14. Compute T _t T _t = $\frac{L}{3600 V}$ Segment ID 14. Compute T _t T _t = $\frac{L}{3600 V}$ Segment ID 15. Surface Description 16. Sufface Description 17. Surface Description 18. Flow Length, L 19. Outpute T _t T _t = $\frac{L}{3600 V}$ Segment ID 10. Average Velocity, V 14. Compute T _t T _t = $\frac{L}{3600 V}$ Segment ID 14. Compute T _t O.036 Shours 15. Solution V Segment ID 16. Solution V Segment ID 17. Surface Description 18. Solution V 19. Solution V 19. Solution V 19. Solution V 10. S	Circle One: Present Developed		Existing	Watershed A5 - Perviou	IS	
Sheet Flow (Applicable to T _c Only) Segment ID 1 Short Grass Prairie	Circle One: T _c T _t through suba	area				
1. Surface Description (NEH table 15-1) 2. Manning's Roughness Coeff., n (NEH table 15-1) 3. Flow Length, L (total L < 100 ft)	Include a map, schematic, or description of flo	ow segments.				
1. Surface Description (NEH table 15-1) 2. Manning's Roughness Coeff., n (NEH table 15-1) 3. Flow Length, L (total L < 100 ft)		_				
1. Surface Description (NEH table 15-1) 2. Manning's Roughness Coeff., n (NEH table 15-1) 3. Flow Length, L (total L < 100 ft)	Sheet Flow (Applicable to T _c Only)	Segment ID				
2. Manning's Roughness Coeff., n (NEH table 15-1) 0.15	1 Surface Description (NEH table 15-1)					
3. Flow Length, L (total L < 100 ft) 4. Two-year 24-hr rainfall, P ₂ 5. Land Slope, s 6. Compute T _t $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$ 5. Land Slope, s 6. Compute T _t $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$ 5. Sheet Flow Sub-Total 0.149 hours 5. Sheet Flow Sub-Total 0.079 10. Average Velocity, V (NEH table 15-3) 11. Compute T _t $T_t = \frac{L}{3600 V}$ 5. Segment ID 12. Flow Length, L 13. Average Velocity, V 14. Compute T _t $T_t = \frac{L}{3600 V}$ 5. Segment ID 14. Compute T _t $T_t = \frac{L}{3600 V}$ 5. Segment ID 15. Shallow Conc. Flow Sub-Total 0.055 hours 5. Segment ID 16. Shallow Conc. Flow Sub-Total 0.055 hours 5. Segment ID 14. Compute T _t $T_t = \frac{L}{3600 V}$ 5. Segment ID 5. Seg						
Since Consider (Construction of the construction of th		ft				
Interpretation of the product of the						
6. Compute T_t $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$ hr 0.149 + $1 + 1$ + $1 + 1 + 1$ + $1 + 1 + 1$ + $1 + 1 + 1$ + $1 + 1 + 1$ + $1 + 1 + 1$ + $1 + 1 + 1$ + $1 + 1 + 1$ + $1 + 1 + 1$ + $1 + 1 + 1 + 1$ + $1 + 1 + 1 + 1$ + $1 + 1 + 1 + 1 + 1$ + $1 + 1 + 1 + 1 + 1$ + $1 + 1 + 1 + 1 + 1 + 1 + 1$ + $1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $	· · _					
Sheet Flow Sub-Total0.149 hoursShallow Concentrated FlowSegment ID2357.Surface DescriptionGrassedPavementLitter8.Flow Length, Lft20138919.Watercourse Slope, sft/ft0.0450.0120.07910.Average Velocity, V (NEH table 15-3)ft/s3.422.240.7111.Compute TtTt =Lhr0.002+0.01712.Flow Length, Lft61513.Average Velocity, Vft/s2.00+14.Compute TtTt =Lhr15.Average Velocity, Vft/s2.00+14.Compute TtTt =L15.Average Velocity, Vft/s2.00+14.Compute TtTt =L15.GrassedHr61516.Segment ID417.Tt =3600 VChannel Flow Sub-Total0.085 hours-Channel Flow Sub-Total0.085 hoursChannel Flow Sub-Total0.085 hoursChannel Flow Sub-Total0.085 hoursChannel Flow Sub-Total0.085 hoursChannel Flow Sub-Total0.085 hours <td cols<="" td=""><td></td><td></td><td></td><td>+</td><td></td></td>	<td></td> <td></td> <td></td> <td>+</td> <td></td>				+	
Sheet Flow Sub-Total0.149 hoursShallow Concentrated FlowSegment ID2357.Surface DescriptionGrassedPavementLitter8.Flow Length, Lft20138919.Watercourse Slope, sft/ft0.0450.0120.07910.Average Velocity, V (NEH table 15-3)ft/s3.422.240.7111.Compute TtTt =Lhr0.002+0.01712.Flow Length, Lft61513.Average Velocity, Vft/s2.00+14.Compute TtTt =Lhr15.Average Velocity, Vft/s2.00+14.Compute TtTt =L15.Average Velocity, Vft/s2.00+14.Compute TtTt =L15.GrassedHr61516.Segment ID417.Tt =3600 VChannel Flow Sub-Total0.085 hours-Channel Flow Sub-Total0.085 hoursChannel Flow Sub-Total0.085 hoursChannel Flow Sub-Total0.085 hoursChannel Flow Sub-Total0.085 hoursChannel Flow Sub-Total0.085 hours <td cols<="" td=""><td>$T_t = \frac{0.007 (hL)}{P_t^{0.5} c^{0.4}}$</td><td>· · · · L</td><td>0.140</td><td></td><td></td></td>	<td>$T_t = \frac{0.007 (hL)}{P_t^{0.5} c^{0.4}}$</td> <td>· · · · L</td> <td>0.140</td> <td></td> <td></td>	$T_t = \frac{0.007 (hL)}{P_t^{0.5} c^{0.4}}$	· · · · L	0.140		
Shallow Concentrated FlowSegment ID2357.Surface Description6GrassedPavementLitter8.Flow Length, Lft20138919.Watercourse Slope, sft/ft0.0450.0120.07910.Average Velocity, V (NEH table 15-3)ft/s3.422.240.7111.Compute T_t $T_t = \frac{L}{3600 V}$ hr0.002+0.017+Shallow Conc. Flow Sub-Total0.055 hoursSegment ID12.Flow Length, Lft615	12 3	-		Sheet Flow Sub-Total	0 149 hours	
The second se					0.140 110010	
7. Surface Description Waterways Pavement Litter 8. Flow Length, L ft 20 138 91 9. Watercourse Slope, s ft/ft 0.045 0.012 0.079 10. Average Velocity, V (NEH table 15-3) ft/s 3.42 2.24 0.71 11. Compute T _t T _t = L hr 0.002 + 0.017 + 0.036 Segment ID 4	Shallow Concentrated Flow	Segment ID	2	3	5	
9.Watercourse Slope, sft0.0450.0120.07910.Average Velocity, V (NEH table 15-3)ft/s 3.42 2.24 0.71 11.Compute Tt $T_t = \frac{L}{3600 V}$ hr 0.002 $+$ 0.017 $+$ 12.Flow Length, LSegment ID4 $$	7. Surface Description	-		Pavement	-	
Interference or subarea T_c or T_tInterference or subarea T_c or T_	8. Flow Length, L	ft	20	138	91	
11. Compute T_t $T_t = \frac{L}{3600 V}$ Interview of the rest of the r	9. Watercourse Slope, s	ft/ft	0.045	0.012	0.079	
Channel FlowSegment ID40.055 hours12. Flow Length, LSegment ID4	10. Average Velocity, V (NEH table 15-3)	ft/s	3.42	2.24	0.71	
Channel FlowSegment IDA0.055 hours12. Flow Length, LSegment ID4 $$	11. Compute T_t $T = $	hr	0.002	+ 0.017 +	0.036	
Channel FlowSegment ID412. Flow Length, Lft61513. Average Velocity, Vft/s2.0014. Compute T_t $T_t = \frac{L}{3600 V}$ hrChannel Flow Sub-Total0.085 hours	3600 V	_				
12. Flow Length, L ft 615 13. Average Velocity, V ft/s 2.00 14. Compute T_t $T_t = \frac{L}{3600 V}$ hr 0.085 Channel Flow Sub-Total 0.085 hours Watershed or subarea T_c or T_t		-	Shallo	w Conc. Flow Sub-Total	0.055 hours	
13. Average Velocity, V ft/s 2.00 14. Compute T_t $T_t = \frac{L}{3600 V}$ hr 0.085 Channel Flow Sub-Total 0.085 hours Watershed or subarea T_c or T_t Total Tc (hours) = 0.289 hours	Channel Flow	Segment ID	4			
14. Compute T_t $T_t = \frac{L}{3600 V}$ hr 0.085 + + - Watershed or subarea T_c or T_t Total Tc (hours) = 0.289 hours	12. Flow Length, L	ft	615			
$T_{t} = \frac{3600 \text{ V}}{Channel \text{ Flow Sub-Total } 0.085 \text{ hours}}$ Watershed or subarea T _c or T _t Total Tc (hours) = 0.289 hours	13. Average Velocity, V	ft/s	2.00			
Channel Flow Sub-Total 0.085 hours Watershed or subarea T _c or T _t Total Tc (hours) = 0.289 hours	14. Compute T_t $T_t = $	hr	0.085	+ +		
Watershed or subarea T _c or T _t Total Tc (hours) = 0.289 hours	3600 V	_				
			(Channel Flow Sub-Total	0.085 hours	
(Add Sub-Total T _t from prior steps) Total Tc (minutes) = 17 minutes	Watershed or subarea T _c or T _t			Total Tc (hours) =	0.289 hours	
	(Add Sub-Total T _t from prior steps)			Total Tc (minutes) =	17 minutes	

Project: Project King Arthur	By:	AM	Date:	2/21/2023
Location: North Brunswick, NJ	Checked By:	PM	Date Checked:	2/21/2023
Circle One: Present Developed		Existing Wa	atershed B - Imperviou	S
Circle One: T _c T _t through suba	rea			
Include a map, schematic, or description of flow	w segments.			
Sheet Flow (Applicable to T _c Only)	Segment ID	1	2	
1. Surface Description (NEH table 15-1)		Smooth Surfaces	Dense Grasses	
2. Manning's Roughness Coeff., n (NEH table 15-1)		0.011	0.24	
3. Flow Length, L (total L < 100 ft)	ft	29	71	
4. Two-year 24-hr rainfall, P_2	in	3.36	3.36	
5. Land Slope, s	ft/ft	0.011	0.008	
6. Compute T_t $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} S^{0.4}}$	hr	0.009	+ 0.249 +	
$P_{2}^{0.5}s^{0.4}$				
		5	heet Flow Sub-Total	0.258 hours
Shallow Concentrated Flow	Segment ID	3 Grassed		
7. Surface Description		Waterways		
8. Flow Length, L	ft	78		
9. Watercourse Slope, s	ft/ft	0.009		
10. Average Velocity, V (NEH table 15-3)	ft/s	1.57		
11. Compute T_t $T_t = \frac{L}{3600 V}$	hr	0.014	+ +	
¹ t ⁻ 3600 V				
		Shallow (Conc. Flow Sub-Total	0.014 hours
Channel Flow	Segment ID	4]
12. Flow Length, L	ft			
13. Average Velocity, V	ft/s	_		
	hr	0.039	+ +	
14. Compute T_t $T_t = -\frac{L}{3600 V}$				
		Cha	annel Flow Sub-Total	0.039 hours
				0.044 h
Watershed or subarea T _c or T _t (Add Sub-Total T _t from prior steps)			Total Tc (hours) = Total Tc (minutes) =	0.311 hours
				19 minutes

Project: Project King Arthur	By:	AM	Date:	2/21/2023
Location: North Brunswick, NJ	Checked By:	PM	Date Checked:	2/21/2023
Circle One: Present Developed		Existing Watershed B - Pervious		
Circle One: T _c T _t through suba	rea			
Include a map, schematic, or description of flo	w segments.			
<u>Sheet Flow</u> (Applicable to T _c Only)	Segment ID	1	_	
1. Surface Description (NEH table 15-1)		Dense Grasses	s	
2. Manning's Roughness Coeff., n (NEH table 15-1)		0.24		
3. Flow Length, L (total L < 100 ft)	ft	100		
4. Two-year 24-hr rainfall, P_2	in	3.34		
5. Land Slope, s	ft/ft	0.016		
6. Compute T_t $T_t = \frac{0.007 (nL)^{0.8}}{P_0^{0.5} s^{0.4}}$	hr	0.252	+ +	
$P_{1} - \frac{P_{2}^{0.5} s^{0.4}}{P_{2}^{0.5} s^{0.4}}$				
			Sheet Flow Sub-Total	0.252 hours
Shallow Concentrated Flow	Segment ID	2	┥┝───┤┝	
7. Surface Description		Pavement		
8. Flow Length, L	ft	84		
9. Watercourse Slope, s	ft/ft	0.010		
10. Average Velocity, V (NEH table 15-3)	ft/s	1.98		
11. Compute T_t $T_t = \frac{L}{3600 V}$	hr	0.012	+ +	
3600 V				
		Shallo	w Conc. Flow Sub-Total	0.012 hours
Channel Flow	Contract	3		
Channel Flow	Segment ID	282	┥┝───┤┝	
12. Flow Length, L	ft	2.00	┥┟────┤┟	
13. Average Velocity, V 14. Compute T _t	ft/s hr	0.039	+ +	
14. Compute T_t $T_t = \frac{L}{3600 V}$	111	0.039		
2000 4			Channel Flow Sub-Total	0.039 hours
Watershed or subarea T _c or T _t			Total Tc (hours) =	0.303 hours
(Add Sub-Total T _t from prior steps)			Total Tc (minutes) =	18 minutes

Watershed Model Schematic

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Project: Existing Hydrographs_Current Precipitation.gpw

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 02 / 21 / 2023

Watershed Model Schematic	1
---------------------------	---

2 - Year

Summary Report	2)
Hydrograph Reports	3	;
Hydrograph No. 1, SCS Runoff, Watershed A-1 (Pervious)	3	;
Hydrograph No. 2, SCS Runoff, Watershed A-1 (Impervious)		
Hydrograph No. 3, Combine, A1 Combined	5	;
Hydrograph No. 5, SCS Runoff, Watershed A-2 (Pervious)	6	;
Hydrograph No. 6, SCS Runoff, Watershed A-2 (Impervious)		
Hydrograph No. 7, Combine, A2 Combined	8	3
Hydrograph No. 9, SCS Runoff, Watershed A-3 (Pervious)	9)
Hydrograph No. 10, SCS Runoff, Watershed A-3 (Impervious)	. 10)
Hydrograph No. 11, Combine, A3 Combined	. 11	
Hydrograph No. 13, SCS Runoff, Watershed A-4 (Pervious)	. 12)
Hydrograph No. 14, SCS Runoff, Watershed A-4 (Impervious)	. 13	3
Hydrograph No. 15, Combine, A4 Combined	. 14	ŀ
Hydrograph No. 17, Combine, POA A	. 15	;
Hydrograph No. 19, SCS Runoff, Watershed B (Impervious)	. 16	;
Hydrograph No. 20, SCS Runoff, Watershed B (Pervious)	. 17	,
Hydrograph No. 21, Combine, Watershed B Combined	. 18	3

10 - Year

Summary Report	19
Hydrograph Reports	20
Hydrograph No. 1, SCS Runoff, Watershed A-1 (Pervious)	
Hydrograph No. 2, SCS Runoff, Watershed A-1 (Impervious)	
Hydrograph No. 3, Combine, A1 Combined	22
Hydrograph No. 5, SCS Runoff, Watershed A-2 (Pervious)	23
Hydrograph No. 6, SCS Runoff, Watershed A-2 (Impervious)	24
Hydrograph No. 7, Combine, A2 Combined	25
Hydrograph No. 9, SCS Runoff, Watershed A-3 (Pervious)	
Hydrograph No. 10, SCS Runoff, Watershed A-3 (Impervious)	27
Hydrograph No. 11, Combine, A3 Combined	28
Hydrograph No. 13, SCS Runoff, Watershed A-4 (Pervious)	29
Hydrograph No. 14, SCS Runoff, Watershed A-4 (Impervious)	30
Hydrograph No. 15, Combine, A4 Combined	31
Hydrograph No. 17, Combine, POA A	32
Hydrograph No. 19, SCS Runoff, Watershed B (Impervious)	33
Hydrograph No. 20, SCS Runoff, Watershed B (Pervious)	34
Hydrograph No. 21, Combine, Watershed B Combined	35

100 - Year

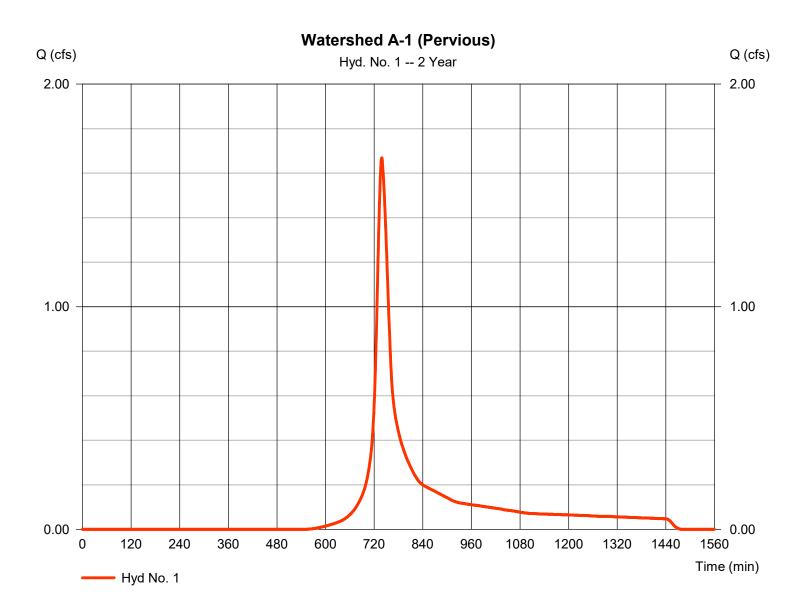
Summary Report	. 36
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Watershed A-1 (Pervious)	
Hydrograph No. 2, SCS Runoff, Watershed A-1 (Impervious)	
Hydrograph No. 3, Combine, A1 Combined	

Hydrograph No. 5, SCS Runoff, Watershed A-2 (Pervious)	40
Hydrograph No. 6, SCS Runoff, Watershed A-2 (Impervious)	41
Hydrograph No. 7, Combine, A2 Combined	
Hydrograph No. 9, SCS Runoff, Watershed A-3 (Pervious)	43
Hydrograph No. 10, SCS Runoff, Watershed A-3 (Impervious)	44
Hydrograph No. 11, Combine, A3 Combined	
Hydrograph No. 13, SCS Runoff, Watershed A-4 (Pervious)	
Hydrograph No. 14, SCS Runoff, Watershed A-4 (Impervious)	
Hydrograph No. 15, Combine, A4 Combined	
Hydrograph No. 17, Combine, POA A	49
Hydrograph No. 19, SCS Runoff, Watershed B (Impervious)	50
Hydrograph No. 20, SCS Runoff, Watershed B (Pervious)	
Hydrograph No. 21, Combine, Watershed B Combined	

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	1.669	1	739	8,589				Watershed A-1 (Pervious)
2	SCS Runoff	1.112	1	734	5,752				Watershed A-1 (Impervious)
3	Combine	2.725	1	737	14,341	1, 2			A1 Combined
5	SCS Runoff	3.040	1	730	11,273				Watershed A-2 (Pervious)
6	SCS Runoff	4.458	1	727	15,934				Watershed A-2 (Impervious)
7	Combine	7.224	1	728	27,207	5, 6			A2 Combined
9	SCS Runoff	0.444	1	734	1,967				Watershed A-3 (Pervious)
10	SCS Runoff	0.176	1	727	660				Watershed A-3 (Impervious)
11	Combine	0.556	1	731	2,627	9, 10			A3 Combined
13	SCS Runoff	2.101	1	734	9,269				Watershed A-4 (Pervious)
14	SCS Runoff	3.806	1	727	14,295				Watershed A-4 (Impervious)
15	Combine	5.471	1	728	23,564	13, 14			A4 Combined
17	Combine	15.24	1	728	67,740	3, 7, 11, 15,			ΡΟΑΑ
19	SCS Runoff	2.594	1	734	13,421				Watershed B (Impervious)
20	SCS Runoff	1.093	1	734	4,800				Watershed B (Pervious)
21	Combine	3.686	1	734	18,222	19, 20			Watershed B Combined
Exi	sting Hydrogr	 raphs_Cu	rrent Pre	cipitation	.gpRreturn I	Period: 2 Ye	ear	Tuesday, 0)2 / 21 / 2023

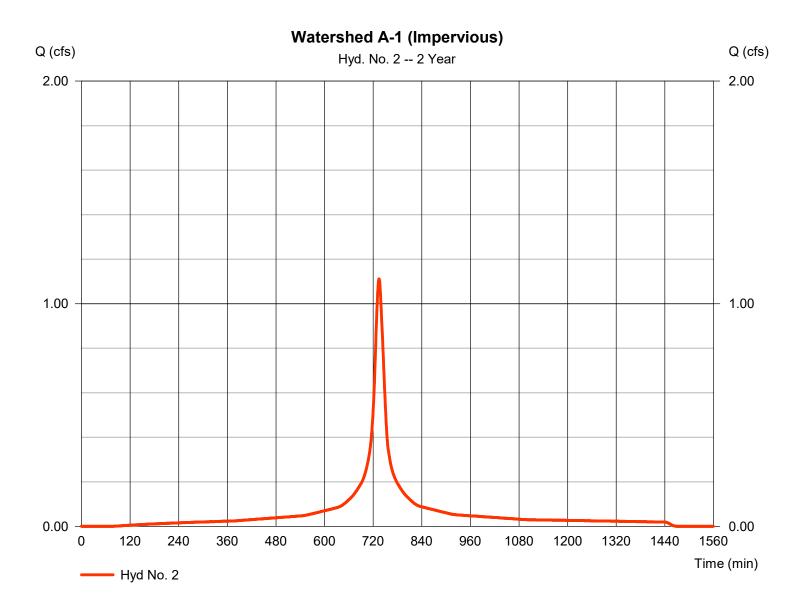

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Watershed A-1 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.669 cfs
Storm frequency	= 2 yrs	Time to peak	= 739 min
Time interval	= 1 min	Hyd. volume	= 8,589 cuft
Drainage area	= 1.640 ac	Curve number	= 79*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 25.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 130245e1f20ct&P roject D	Dat a_484 cipline\Site Civil\Storr

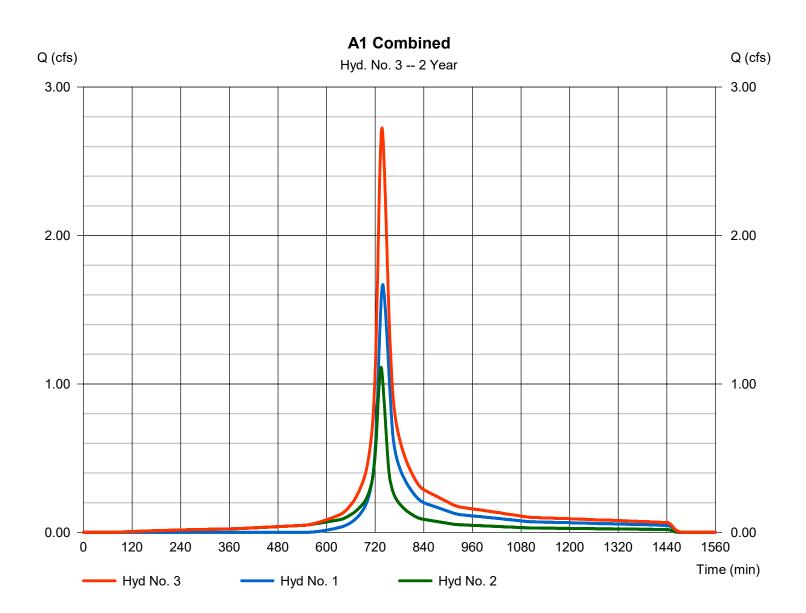
* Composite (Area/CN) = [(1.160 x 80) + (0.480 x 77)] / 1.640



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

Watershed A-1 (Impervious)

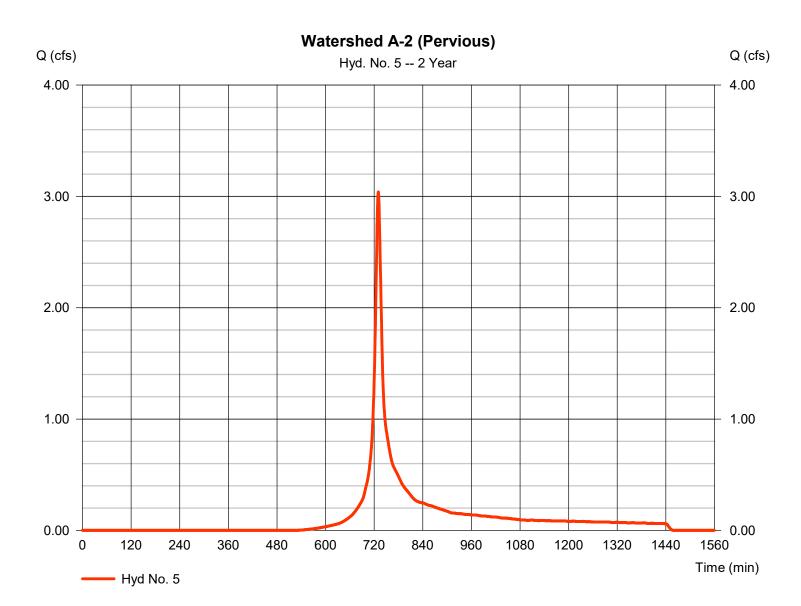

Hydrograph type	= SCS Runoff	Peak discharge	= 1.112 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 5,752 cuft
Drainage area	= 0.510 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 20.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 130245561120Ct&P roject D	Dat a_484 cipline\Site Civil\Storr

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

A1 Combined

5

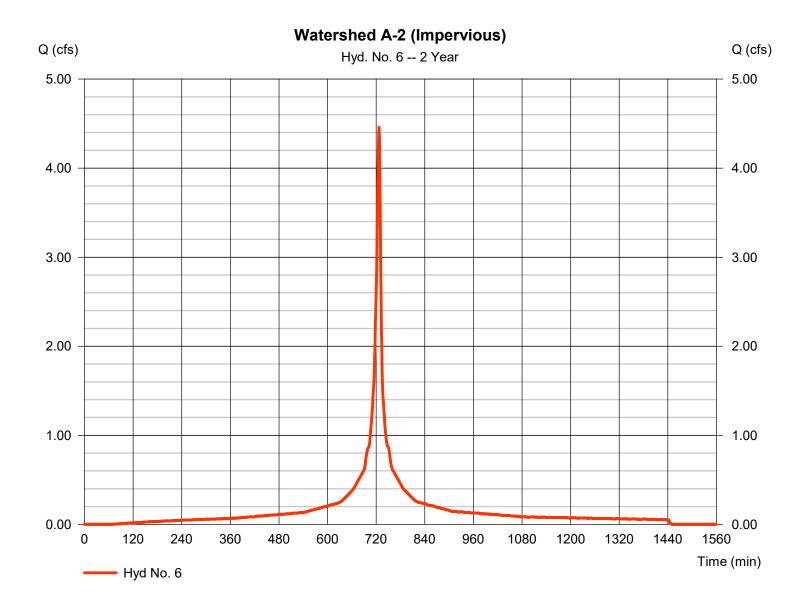

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

Watershed A-2 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 3.040 cfs
Storm frequency	= 2 yrs	Time to peak	= 730 min
Time interval	= 1 min	Hyd. volume	= 11,273 cuft
Drainage area	= 2.020 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 11.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 130245e1f20ctoP roject D)at a_484 cipline\Site Civil\Storr

* Composite (Area/CN) = [(1.850 x 80) + (0.170 x 77)] / 2.020

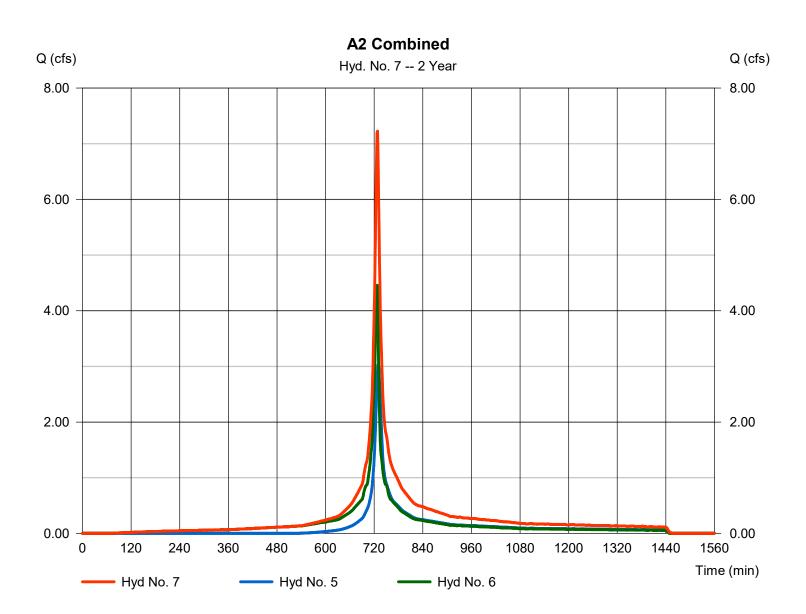


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

Watershed A-2 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 4.458 cfs
Storm frequency	= 2 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 15,934 cuft
Drainage area	= 1.370 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= \\langan.com\data\F	PAR\data0\ 800865e1620ctoP roject D	Dat a_484 cipline\Site Civil\Storr



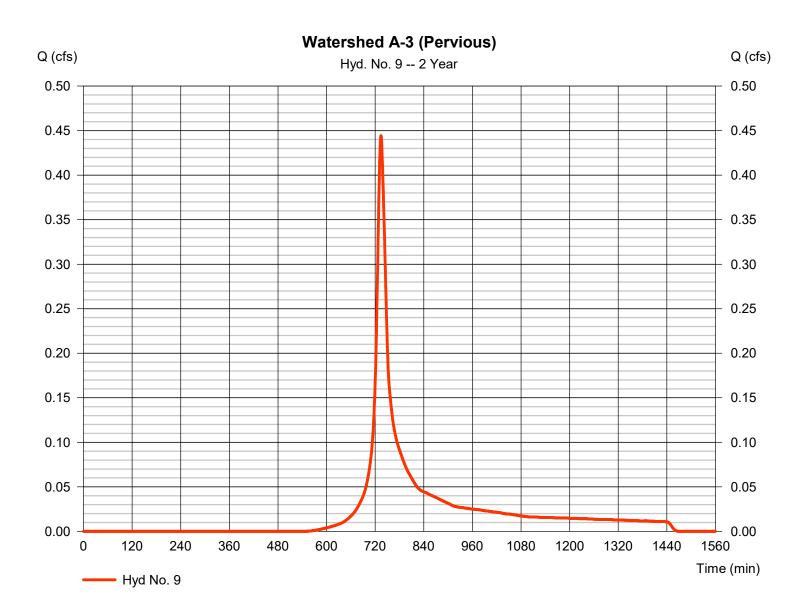
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

A2 Combined

Hydrograph type	= Combine	Peak discharge	= 7.224 cfs
Storm frequency	= 2 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 27,207 cuft
Inflow hyds.	= 5, 6	Contrib. drain. area	= 3.390 ac
-			

8

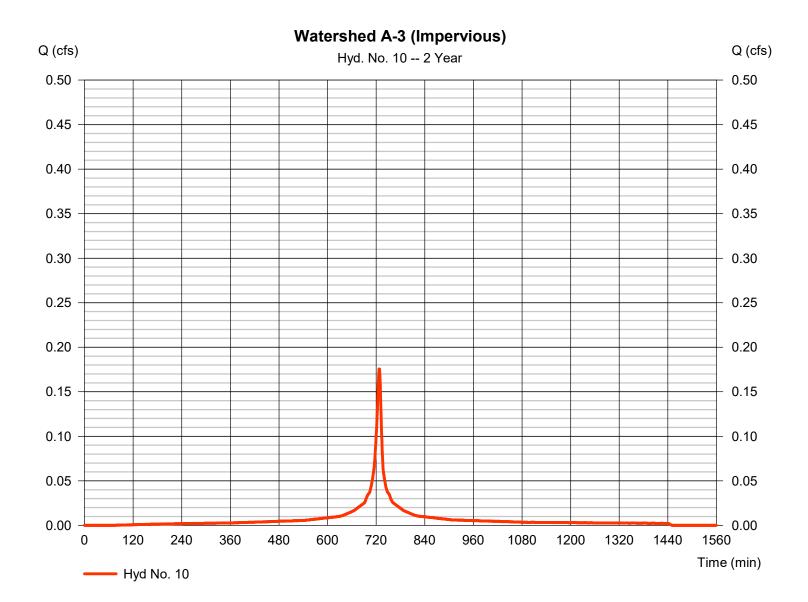

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Watershed A-3 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.444 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 1,967 cuft
Drainage area	= 0.380 ac	Curve number	= 79*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	PAR\data0\ 300205e1020ctoP rojectD)at a_484 cipline\Site Civil\Storr

* Composite (Area/CN) = [(0.300 x 80) + (0.080 x 77)] / 0.380

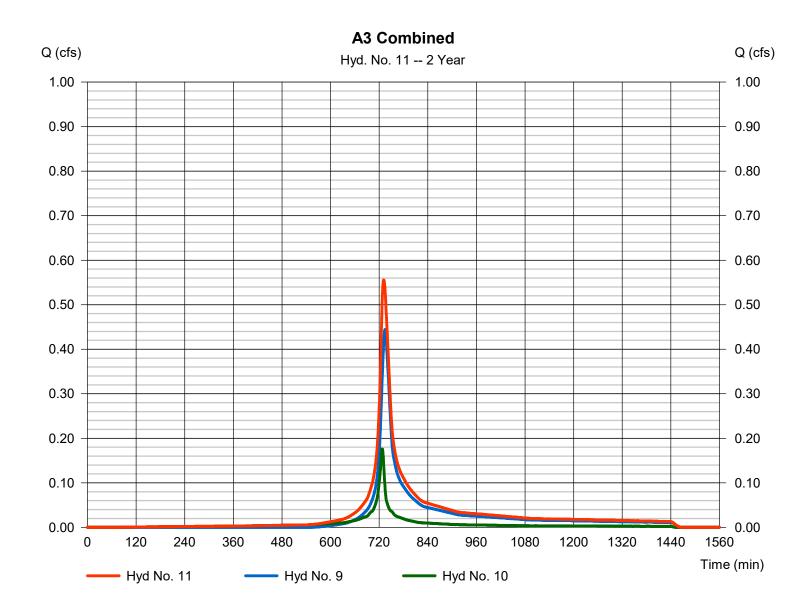

9

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Watershed A-3 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.176 cfs
Storm frequency	= 2 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 660 cuft
Drainage area	= 0.060 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300365e1620ctoP roject D	0at a∖_48e cipline∖Site Civil∖Storr

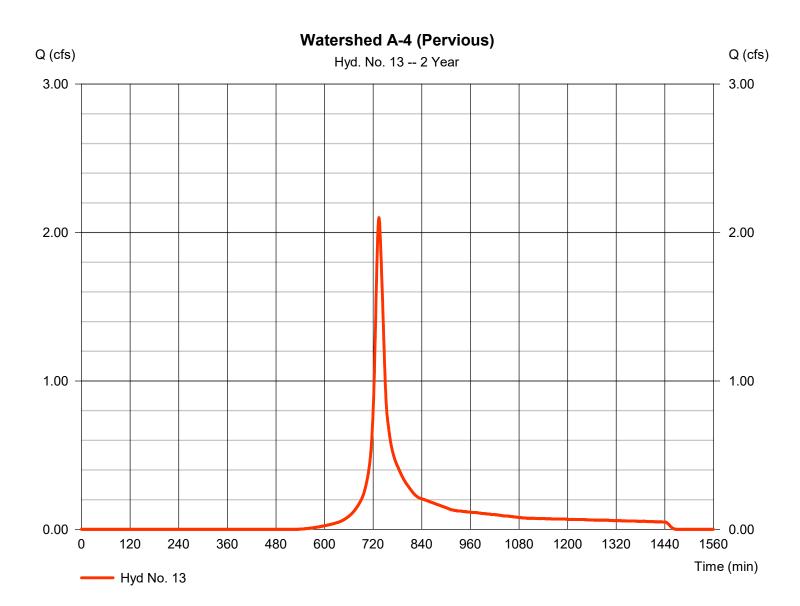


10

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

A3 Combined

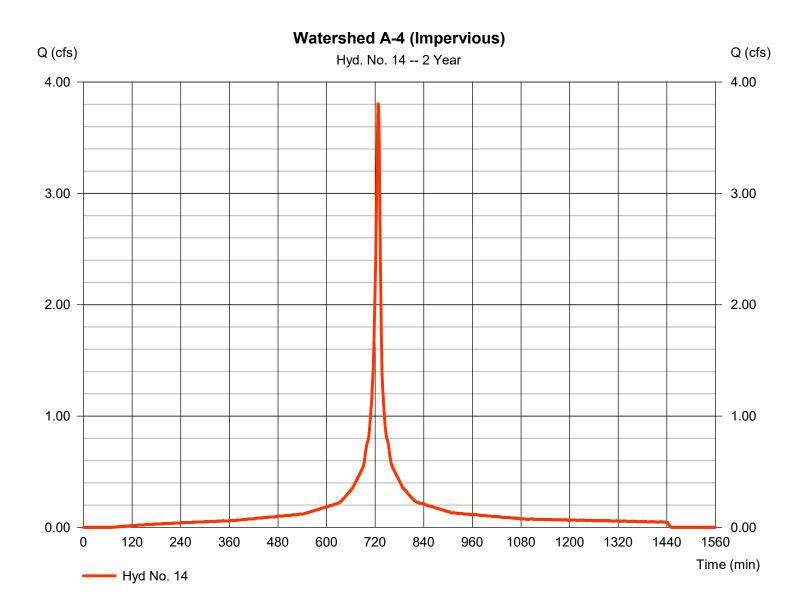

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 13

Watershed A-4 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 2.101 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 9,269 cuft
Drainage area	= 1.710 ac	Curve number	= 80*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 17.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= \\langan.com\data\F	PAR\data0\ 800345e1factoP rojectD	0at a∖_48s4 cipline∖Site Civil∖Storr

* Composite (Area/CN) = [(1.470 x 80) + (0.240 x 77)] / 1.710

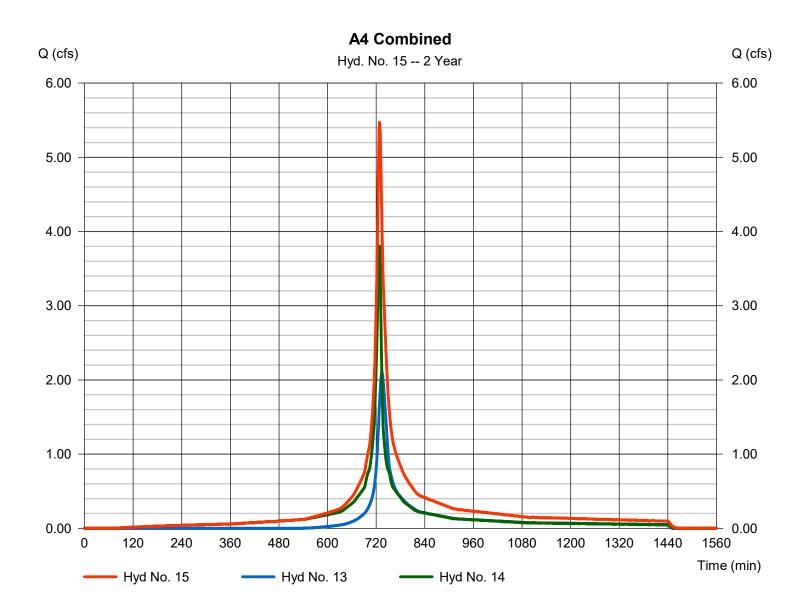


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 14

Watershed A-4 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 3.806 cfs
Storm frequency	= 2 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 14,295 cuft
Drainage area	= 1.300 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 7.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	R\data0\80024561620ctoProject	0at a∖_4384 cipline∖Site Civil∖Storr

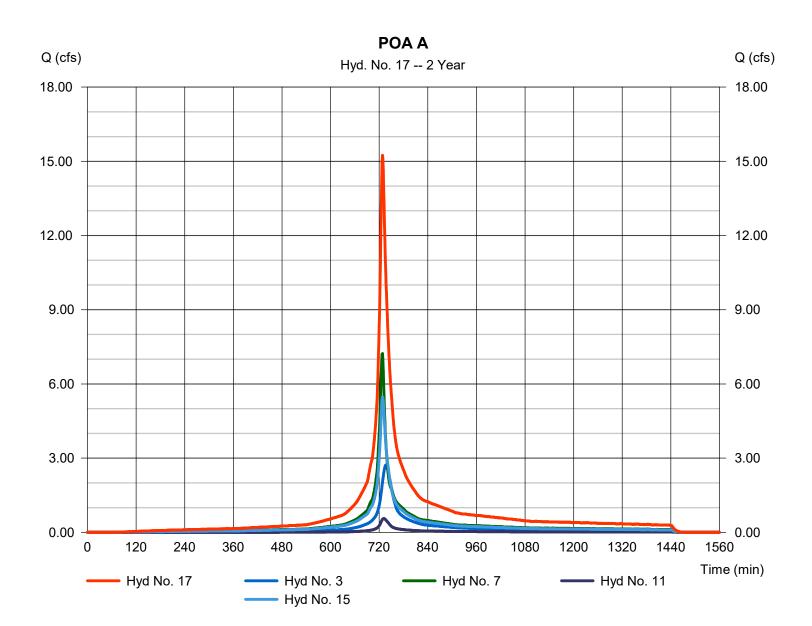


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 15

A4 Combined

Hydrograph type	= Combine	Peak discharge	= 5.471 cfs
Storm frequency	= 2 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 23,564 cuft
Inflow hyds.	= 13, 14	Contrib. drain. area	= 3.010 ac

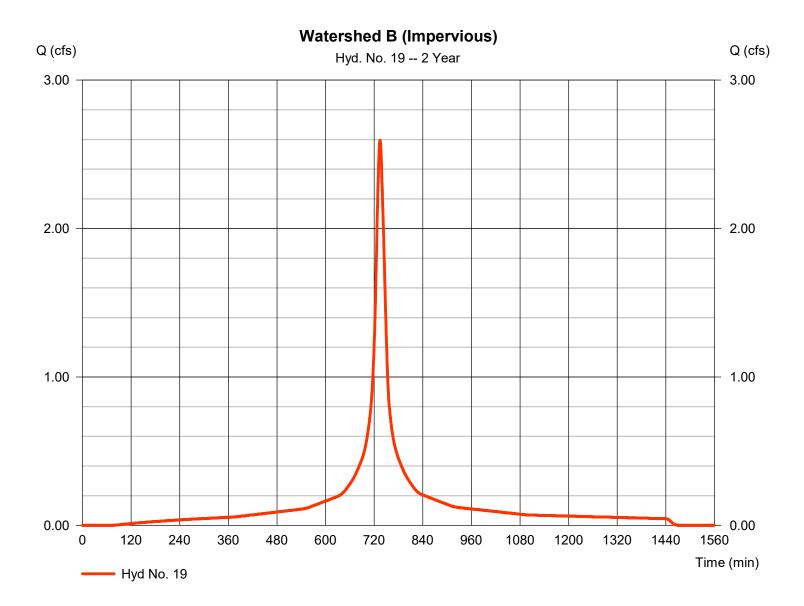


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 17

POA A

Hydrograph type	 Combine 2 yrs 1 min 3, 7, 11, 15 	Peak discharge	= 15.24 cfs
Storm frequency		Time to peak	= 728 min
Time interval		Hyd. volume	= 67,740 cuft
Inflow hyds.		Contrib. drain. area	= 0.000 ac
innow nyus.	- 3, 7, 11, 13	Contrib. Grain. area	= 0.000 ac

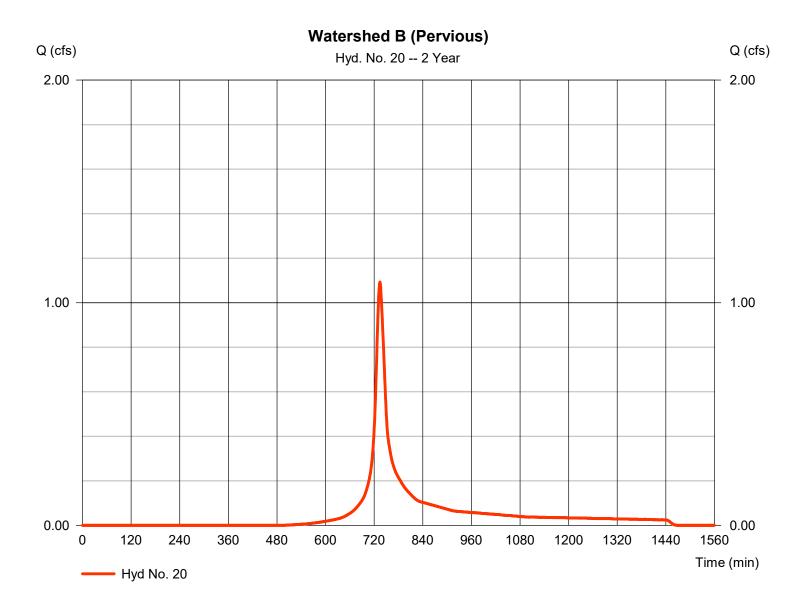

15

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 19

Watershed B (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 2.594 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 13,421 cuft
Drainage area	= 1.190 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ \$00365e1620ctoP rojectD	Dat a_484 cipline\Site Civil\Storr

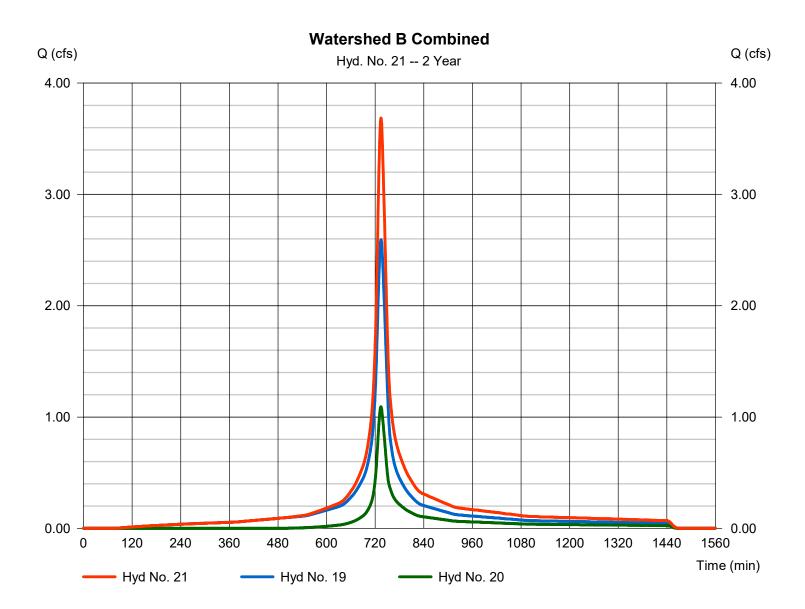

16

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 20

Watershed B (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.093 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 4,800 cuft
Drainage area	= 0.810 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 30030561520ctoP roject D	0at a∖_48t4 cipline∖Site Civil∖Storr



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 21

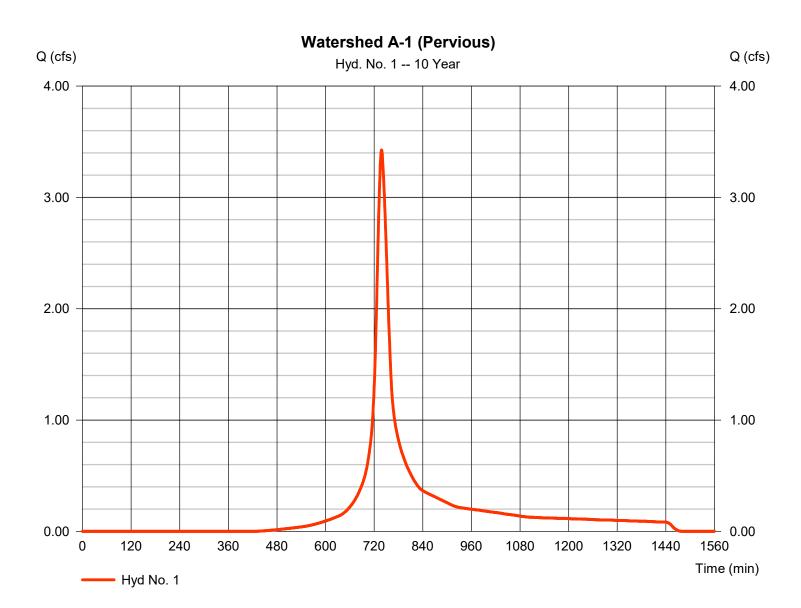
Watershed B Combined

Hydrograph type	= Combine	Peak discharge	= 3.686 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 18,222 cuft
Inflow hyds.	= 19,20	Contrib. drain. area	= 2.000 ac
innow nyus.	- 19, 20	Contrib. Urain. area	- 2.000 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	3.426	1	738	17,450				Watershed A-1 (Pervious)
2	SCS Runoff	1.726	1	734	9,095				Watershed A-1 (Impervious)
3	Combine	5.074	1	737	26,545	1, 2			A1 Combined
5	SCS Runoff	6.081	1	730	22,571				Watershed A-2 (Pervious)
6	SCS Runoff	6.918	1	727	25,196				Watershed A-2 (Impervious)
7	Combine	12.58	1	728	47,767	5, 6			A2 Combined
9	SCS Runoff	0.910	1	734	3,997				Watershed A-3 (Pervious)
10	SCS Runoff	0.273	1	727	1,043				Watershed A-3 (Impervious)
11	Combine	1.082	1	732	5,041	9, 10			A3 Combined
13	SCS Runoff	4.220	1	734	18,558				Watershed A-4 (Pervious)
14	SCS Runoff	5.908	1	727	22,605				Watershed A-4 (Impervious)
15	Combine	9.358	1	729	41,163	13, 14			A4 Combined
17	Combine	26.76	1	728	120,516	3, 7, 11, 15,			ΡΟΑΑ
19	SCS Runoff	4.028	1	734	21,222				Watershed B (Impervious)
20	SCS Runoff	2.116	1	734	9,342				Watershed B (Pervious)
21	Combine	6.144	1	734	30,564	19, 20			Watershed B Combined
Exi	sting Hydrog	raphs Cu	rrent Pre	cipitation	.gpReturn F	ריין Period: 10 א	/ear	Tuesday. ()2 / 21 / 2023

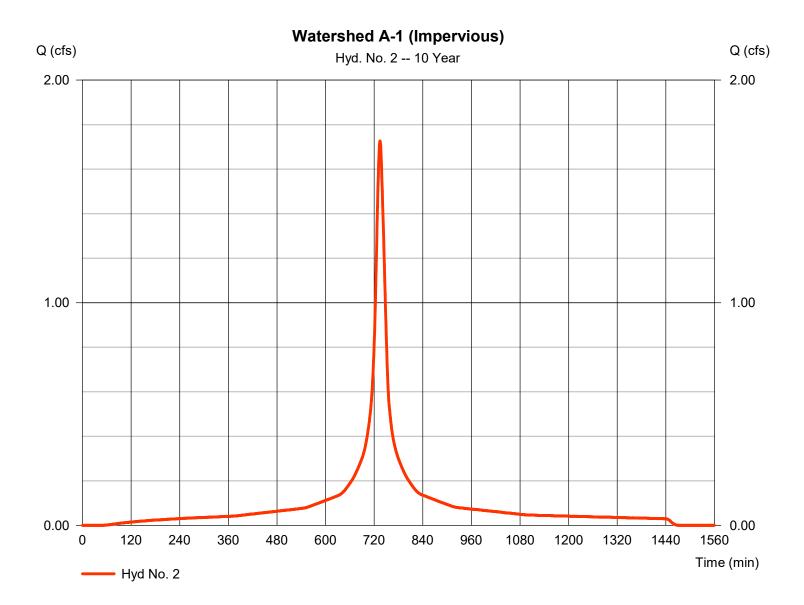

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Watershed A-1 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 3.426 cfs
Storm frequency	= 10 yrs	Time to peak	= 738 min
Time interval	= 1 min	Hyd. volume	= 17,450 cuft
Drainage area	= 1.640 ac	Curve number	= 79*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 25.00 min
Total precip.	= 5.15 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 30045561520ct&P roject D)at a_434 cipline\Site Civil\Storr

* Composite (Area/CN) = [(1.160 x 80) + (0.480 x 77)] / 1.640

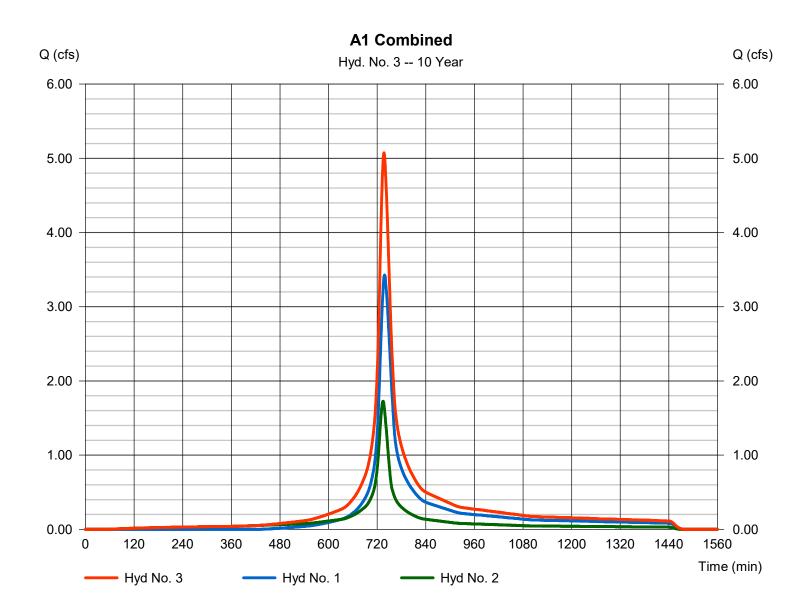


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

Watershed A-1 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.726 cfs
Storm frequency	= 10 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 9,095 cuft
Drainage area	= 0.510 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 20.00 min
Total precip.	= 5.15 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	R\data0\ 1300465elf20ctoP roject D	Dat a_434 cipline\Site Civil\Storr



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

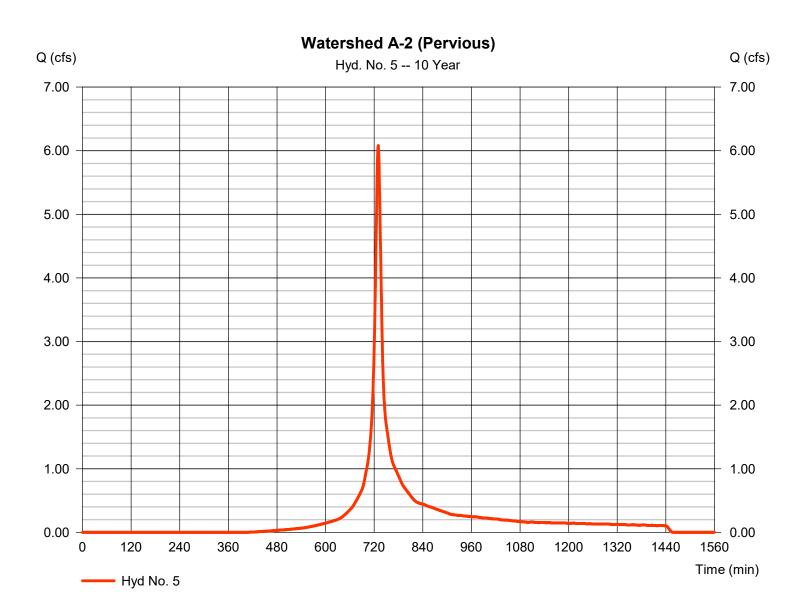
Hyd. No. 3

A1 Combined

Inflow hyds. = 1, 2 Contrib. drain. area = 2.150 ac	Hydrograph type	= Combine	Peak discharge	= 5.074 cfs
	Storm frequency	= 10 yrs	Time to peak	= 737 min
	Time interval	= 1 min	Hyd. volume	= 26,545 cuft
	Inflow hyds.	= 1, 2	Contrib. drain. area	= 2.150 ac

Tuesday, 02 / 21 / 2023

22

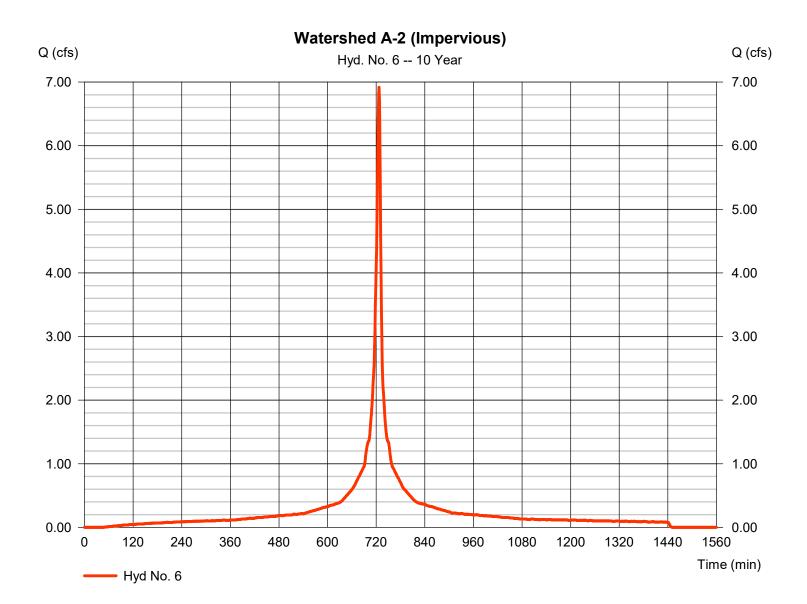

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

Watershed A-2 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 6.081 cfs
Storm frequency	= 10 yrs	Time to peak	= 730 min
Time interval	= 1 min	Hyd. volume	= 22,571 cuft
Drainage area	= 2.020 ac	Curve number	= 80*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 11.00 min
Total precip.	= 5.15 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ S00365e1f20ctoP rojectD)at a_434 cipline\Site Civil\Storr

* Composite (Area/CN) = [(1.850 x 80) + (0.170 x 77)] / 2.020

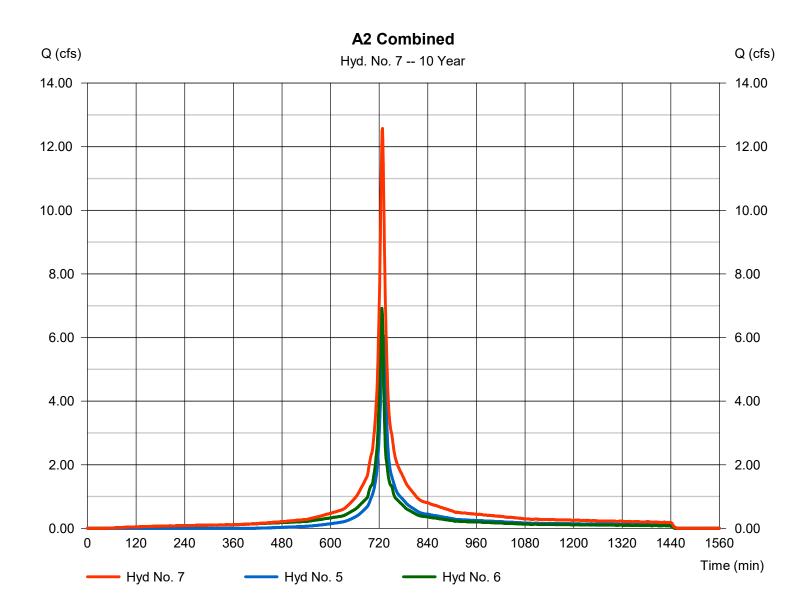


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

Watershed A-2 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 6.918 cfs
Storm frequency	= 10 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 25,196 cuft
Drainage area	= 1.370 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 5.15 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300366ffactoP rojectD)at a∖_434 cipline∖Site Civil∖Storr



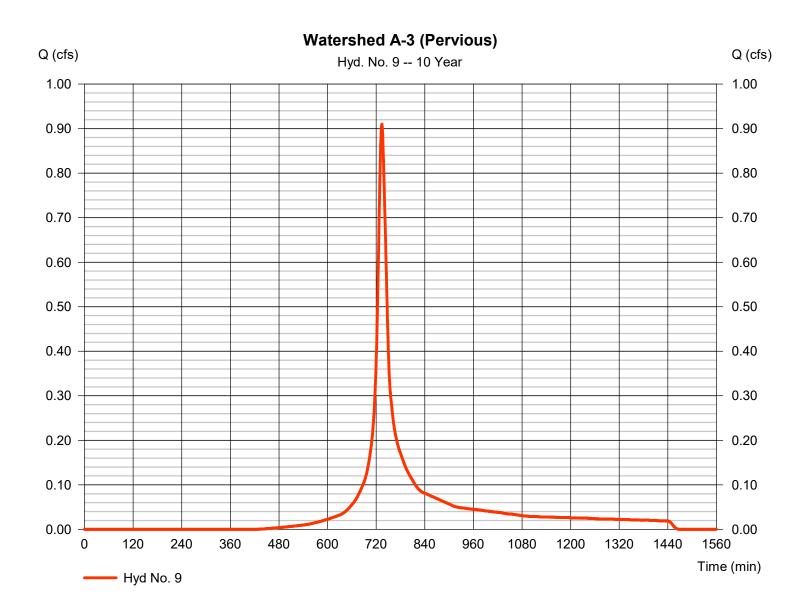
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

A2 Combined

Hydrograph type= CombineStorm frequency= 10 yrsTime interval= 1 minInflow hyds.= 5, 6	Peak discharge= 12.58 cfsTime to peak= 728 minHyd. volume= 47,767 cuftContrib. drain. area= 3.390 ac
---	--

25

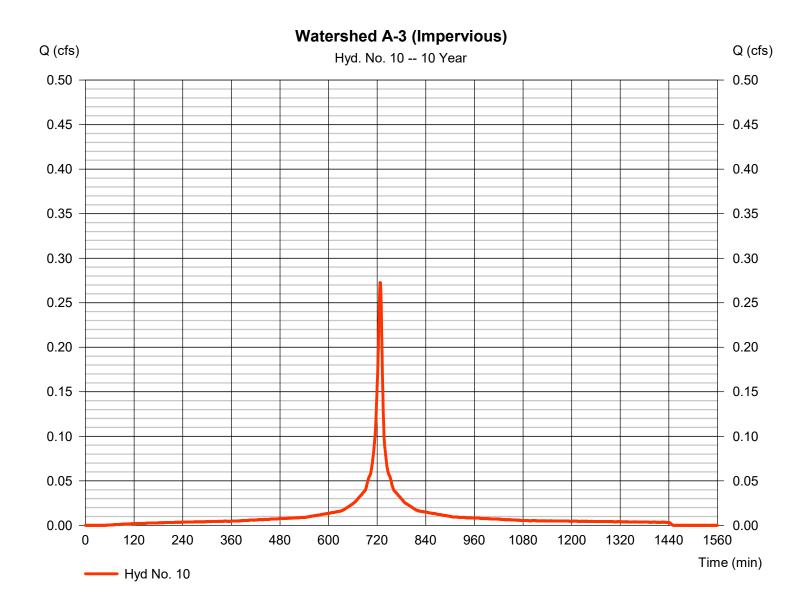

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Watershed A-3 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.910 cfs
Storm frequency	= 10 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 3,997 cuft
Drainage area	= 0.380 ac	Curve number	= 79*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.00 min
Total precip.	= 5.15 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300366ffactoP rojectD)at a_484 cipline\Site Civil\Storr

* Composite (Area/CN) = [(0.300 x 80) + (0.080 x 77)] / 0.380

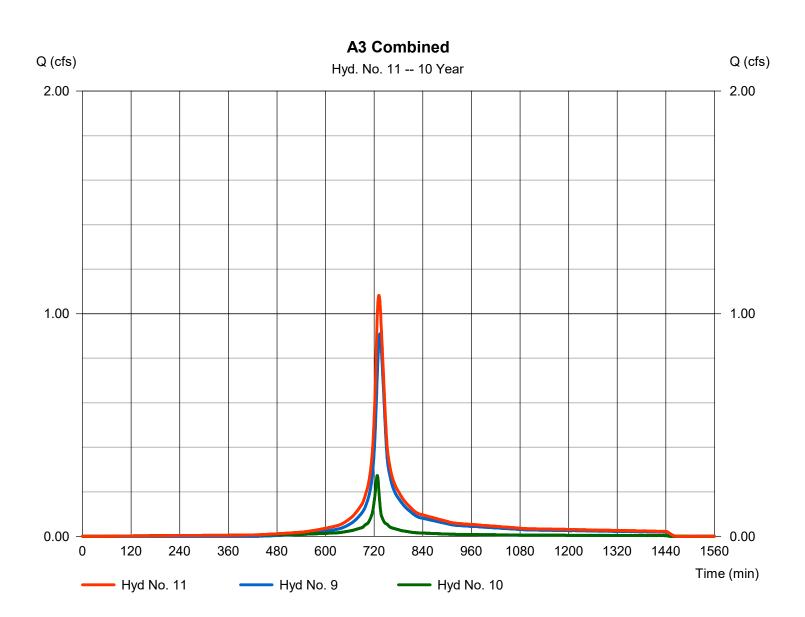


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Watershed A-3 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.273 cfs
Storm frequency	= 10 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 1,043 cuft
Drainage area	= 0.060 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 5.15 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	\R\data0\ 300365elf20ctoP rojectD	0at a∖_48s4 cipline∖Site Civil∖Storr

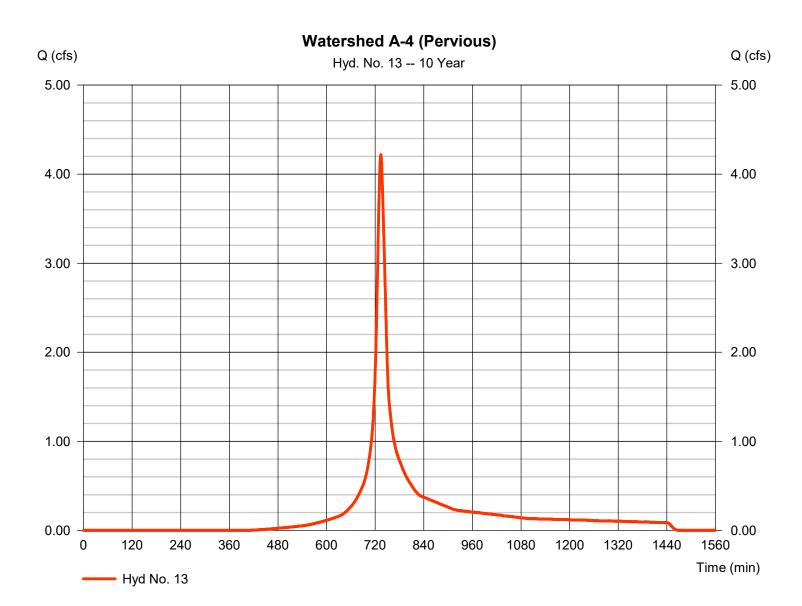


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

A3 Combined

Hydrograph type	= Combine	Peak discharge	= 1.082 cfs
Storm frequency	= 10 yrs	Time to peak	= 732 min
Time interval	= 1 min	Hyd. volume	= 5,041 cuft
Inflow hyds.	= 9, 10	Contrib. drain. area	= 0.440 ac
	•, ••	••••••	

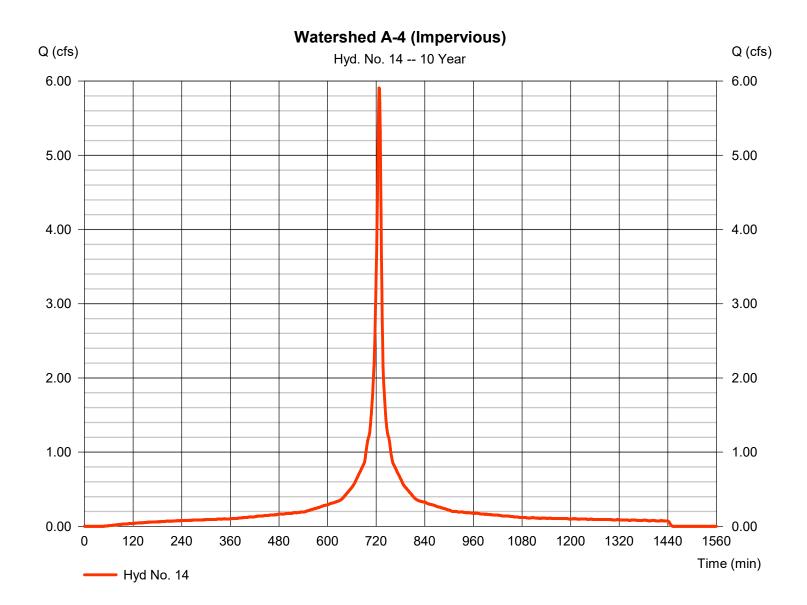

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 13

Watershed A-4 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 4.220 cfs
Storm frequency	= 10 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 18,558 cuft
Drainage area	= 1.710 ac	Curve number	= 80*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 17.00 min
Total precip.	= 5.15 in	Distribution	= Custom
Storm duration	= \\langan.com\data\F	PAR\data0\ 3003561f20ctoP roject D)at a_434 cipline\Site Civil\Storr

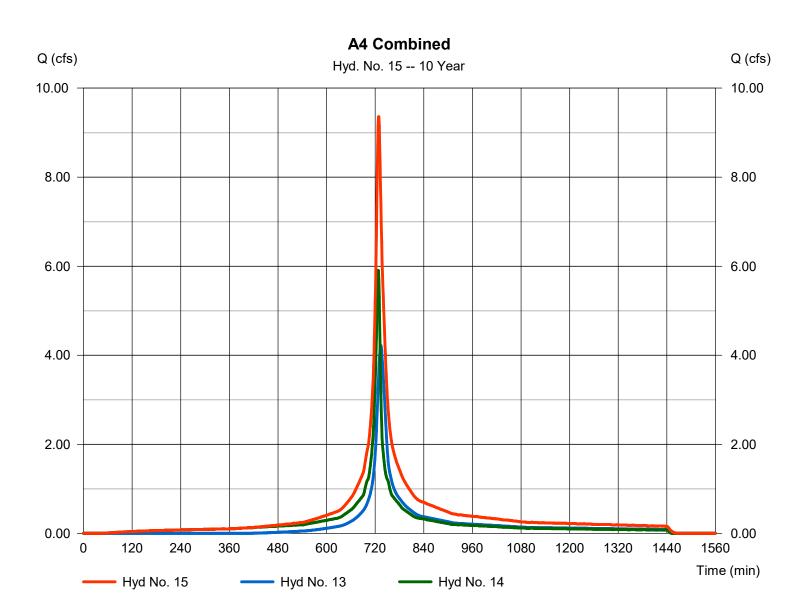
* Composite (Area/CN) = [(1.470 x 80) + (0.240 x 77)] / 1.710



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 14

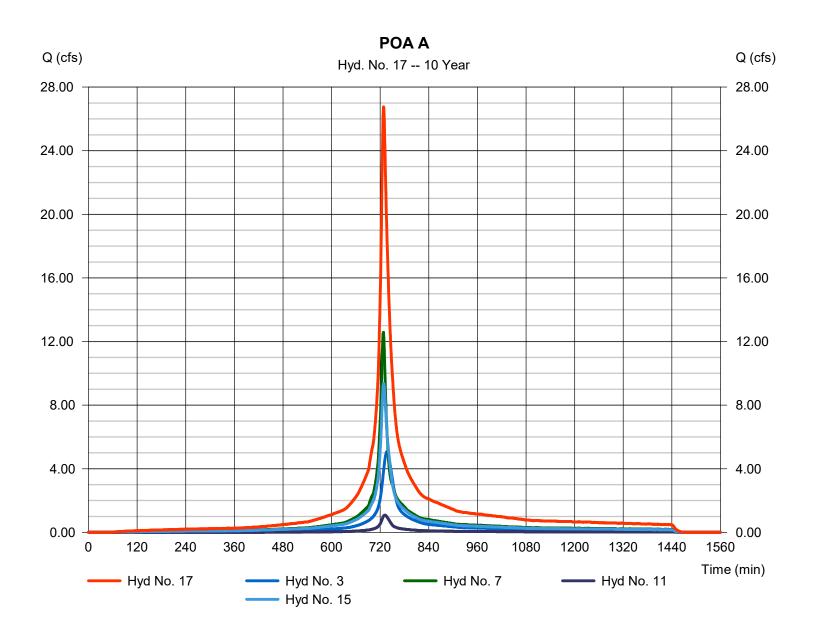
Watershed A-4 (Impervious)


Hydrograph type	= SCS Runoff	Peak discharge	= 5.908 cfs
Storm frequency	= 10 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 22,605 cuft
Drainage area	= 1.300 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 7.00 min
Total precip.	= 5.15 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 800365e1620ctoP roject D	0at a∖_438 cipline∖Site Civil∖Storr

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 15

A4 Combined

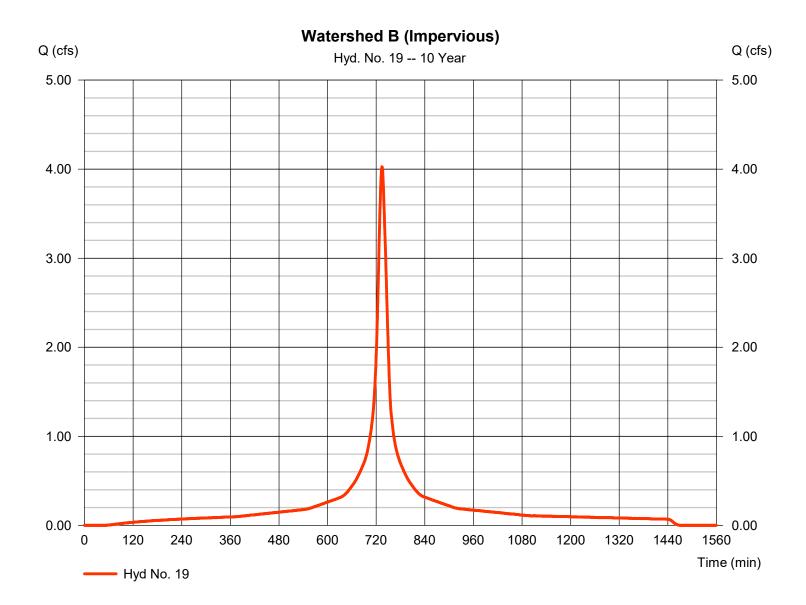


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 17

POA A

Hydrograph type	= Combine	Peak discharge	= 26.76 cfs
Storm frequency	= 10 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 120,516 cuft
Inflow byds	= 3 7 11 15	Contrib. drain, area	= 0.000 ac
Inflow hyds.	= 3, 7, 11, 15	Contrib. drain. area	= 0.000 ac

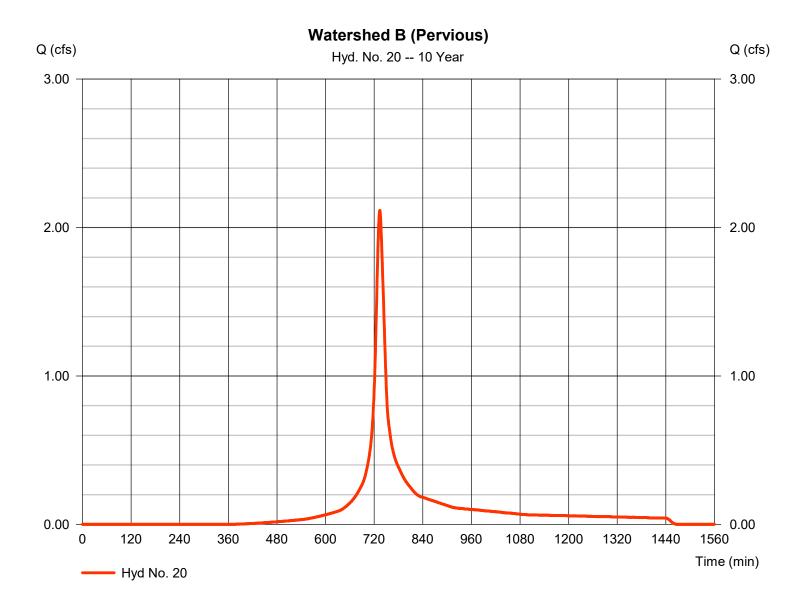

32

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 19

Watershed B (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 4.028 cfs
Storm frequency	= 10 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 21,222 cuft
Drainage area	= 1.190 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 5.15 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	R\data0\ 1300465e11200t10P roject D،	0at a∖_48st cipline∖Site Civil∖Storr

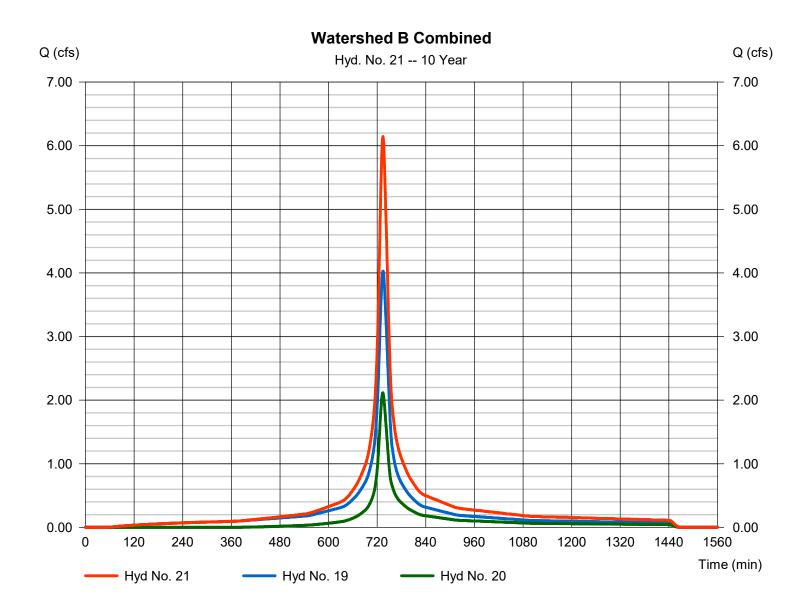


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 20

Watershed B (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 2.116 cfs
Storm frequency	= 10 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 9,342 cuft
Drainage area	= 0.810 ac	Curve number	= 82
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.00 min
Total precip.	= 5.15 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	PAR\data0\ 800865e1620ctoP roject D)at a_484 cipline\Site Civil\Storr



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 21

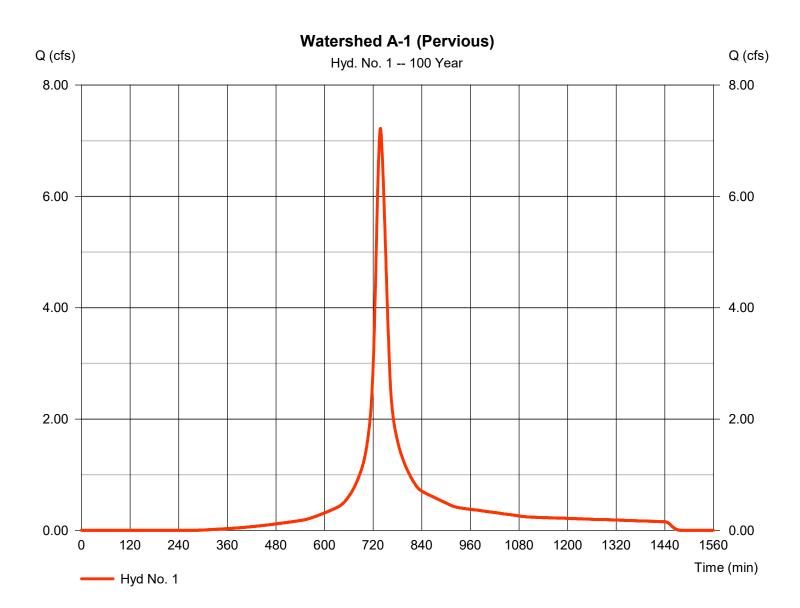
Watershed B Combined

Hydrograph type	= Combine	Peak discharge	= 6.144 cfs
Storm frequency	= 10 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 30,564 cuft
Inflow hyds.	= 19, 20	Contrib. drain. area	= 2.000 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	7.223	1	738	37,472				Watershed A-1 (Pervious)
2	SCS Runoff	2.974	1	734	15,921				Watershed A-1 (Impervious)
3	Combine	10.07	1	737	53,393	1, 2			A1 Combined
5	SCS Runoff	12.55	1	730	47,890				Watershed A-2 (Pervious)
6	SCS Runoff	11.91	1	727	44,104				Watershed A-2 (Impervious)
7	Combine	23.76	1	728	91,994	5, 6			A2 Combined
9	SCS Runoff	1.912	1	734	8,584				Watershed A-3 (Pervious)
10	SCS Runoff	0.470	1	727	1,826				Watershed A-3 (Impervious)
11	Combine	2.213	1	732	10,410	9, 10			A3 Combined
13	SCS Runoff	8.737	1	734	39,377				Watershed A-4 (Pervious)
14	SCS Runoff	10.18	1	727	39,568				Watershed A-4 (Impervious)
15	Combine	17.53	1	729	78,944	13, 14			A4 Combined
17	Combine	50.99	1	728	234,742	3, 7, 11, 15,			ΡΟΑΑ
19	SCS Runoff	6.939	1	734	37,148				Watershed B (Impervious)
20	SCS Runoff	4.261	1	734	19,362				Watershed B (Pervious)
21	Combine	11.20	1	734	56,510	19, 20			Watershed B Combined
Fxi	sting Hydrog	raphs Cu	Irrent Pre	cipitation	.gp®return F	Period [.] 100	Year	Tuesday ()2 / 21 / 2023

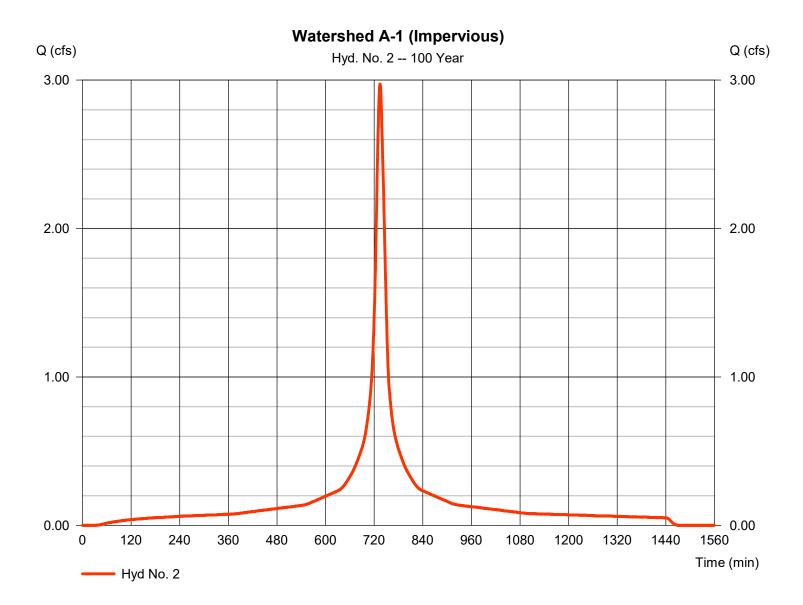

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Watershed A-1 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 7.223 cfs
Storm frequency	= 100 yrs	Time to peak	= 738 min
Time interval	= 1 min	Hyd. volume	= 37,472 cuft
Drainage area	= 1.640 ac	Curve number	= 79*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 25.00 min
Total precip.	= 8.84 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ \$00apterfactoP rojectD	0at a∖_48s4 cipline∖Site Civil∖Storr

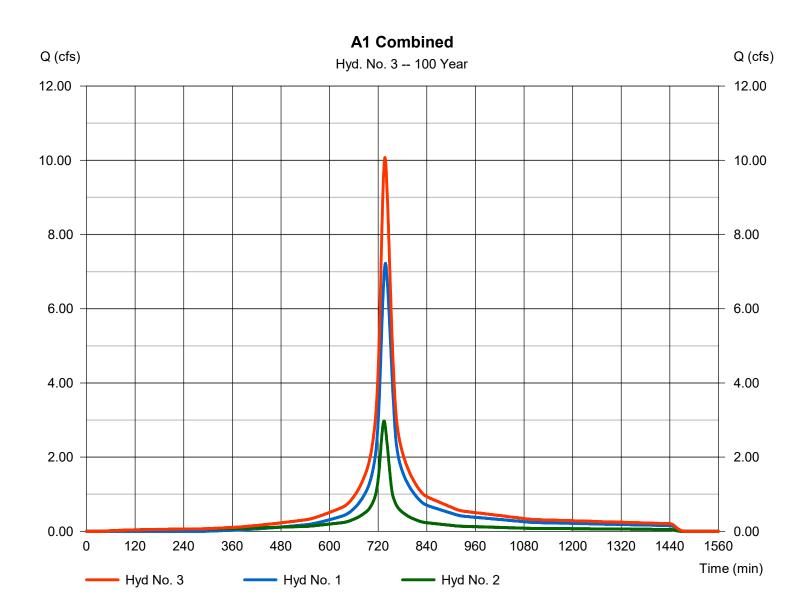
* Composite (Area/CN) = [(1.160 x 80) + (0.480 x 77)] / 1.640



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

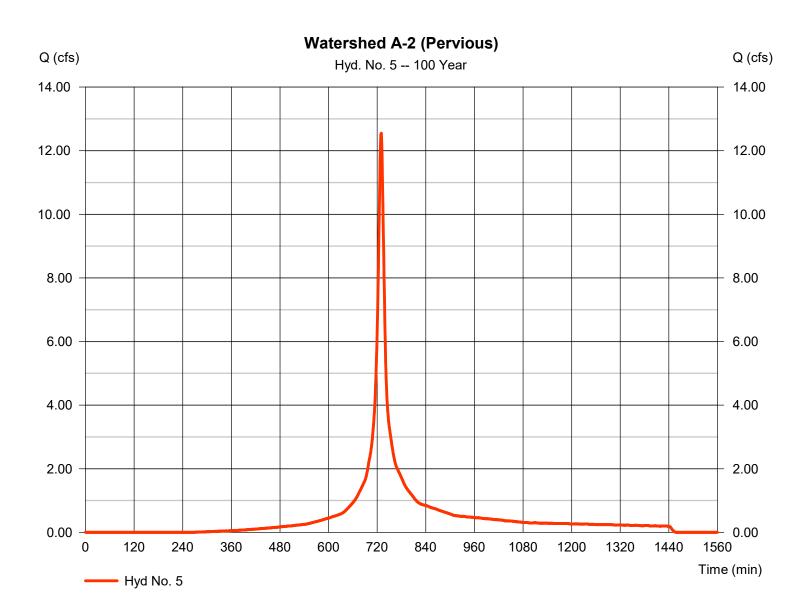
Watershed A-1 (Impervious)


Hydrograph type	= SCS Runoff	Peak discharge	= 2.974 cfs
Storm frequency	= 100 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 15,921 cuft
Drainage area	= 0.510 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 20.00 min
Total precip.	= 8.84 in	Distribution	= Custom
Storm duration	= \\langan.com\data\F	PAR\data0\ 800205e1020ctoP rojectD)at a_484 cipline\Site Civil\Storr

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

A1 Combined

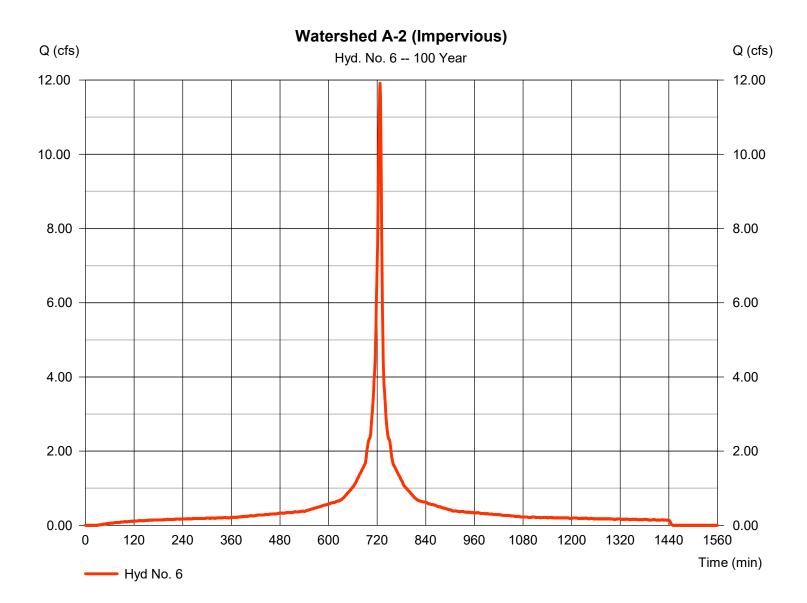

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

Watershed A-2 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 12.55 cfs
Storm frequency	= 100 yrs	Time to peak	= 730 min
Time interval	= 1 min	Hyd. volume	= 47,890 cuft
Drainage area	= 2.020 ac	Curve number	= 80*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 11.00 min
Total precip.	= 8.84 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 130245e1f20ctoP roject D)at a_434 cipline\Site Civil\Storr

* Composite (Area/CN) = [(1.850 x 80) + (0.170 x 77)] / 2.020

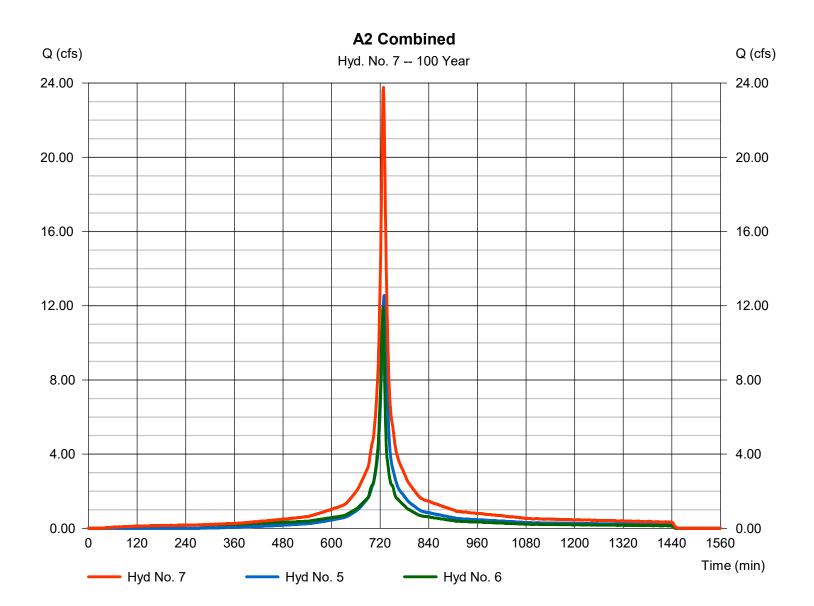

40

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

Watershed A-2 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 11.91 cfs
Storm frequency	= 100 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 44,104 cuft
Drainage area	= 1.370 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 8.84 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	R\data0\800465e1640ctoProject D	0at a∖_t284 cipline∖Site Civil∖Storr

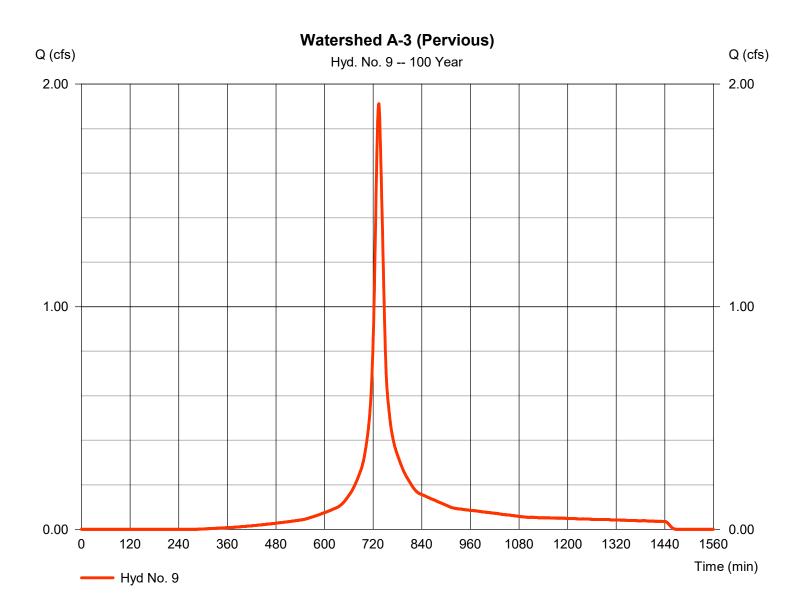


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

A2 Combined

Hydrograph type	= Combine	Peak discharge	= 23.76 cfs
Storm frequency	= 100 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 91,994 cuft
Inflow hyds.	= 5, 6	Contrib. drain. area	= 3.390 ac

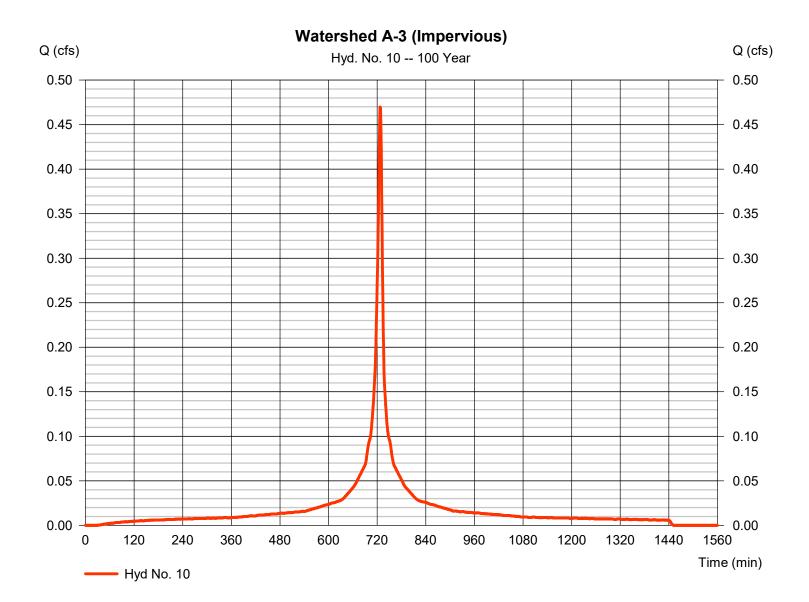

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Watershed A-3 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.912 cfs
Storm frequency	= 100 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 8,584 cuft
Drainage area	= 0.380 ac	Curve number	= 79*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.00 min
Total precip.	= 8.84 in	Distribution	= Custom
Storm duration	= \\langan.com\data\F	PAR\data0\ 300365elf20ctoP rojectD)at a_4034 cipline\Site Civil\Storr

* Composite (Area/CN) = [(0.300 x 80) + (0.080 x 77)] / 0.380

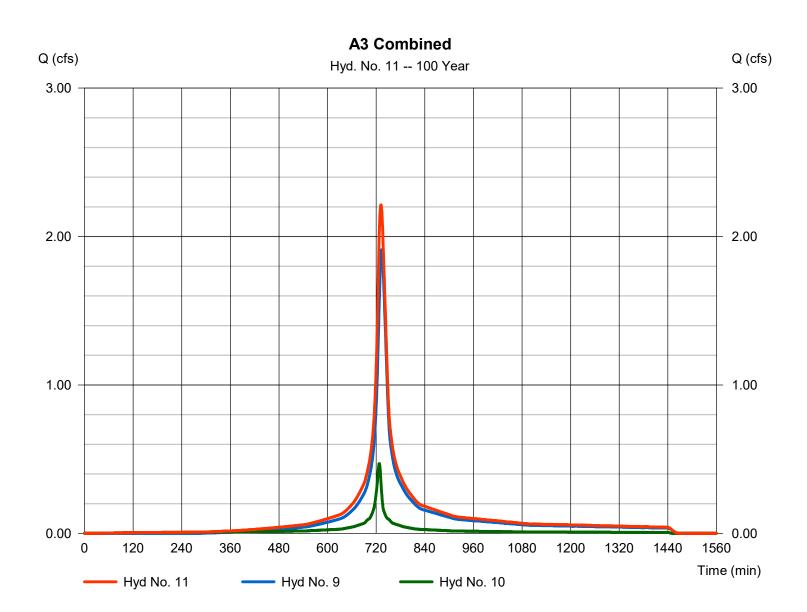


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Watershed A-3 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.470 cfs
Storm frequency	= 100 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 1,826 cuft
Drainage area	= 0.060 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 8.84 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	R\data0\ \$00345 51 f20ctoP roject D	0at a∖_48e cipline∖Site Civil∖Storr

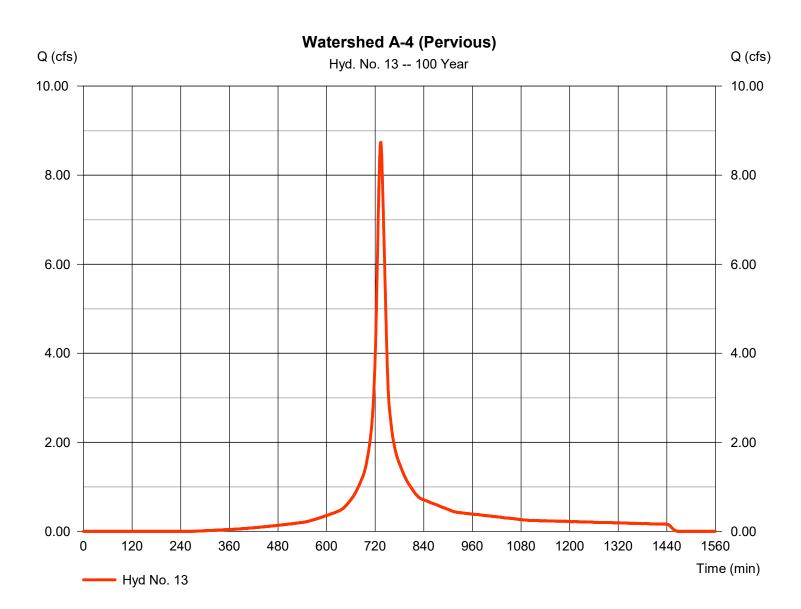

44

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

A3 Combined

Hydrograph type= CombineStorm frequency= 100 yrsTime interval= 1 minInflow hyds.= 9, 10	Peak discharge Time to peak Hyd. volume Contrib. drain. area	= 2.213 cfs = 732 min = 10,410 cuft = 0.440 ac
---	---	---

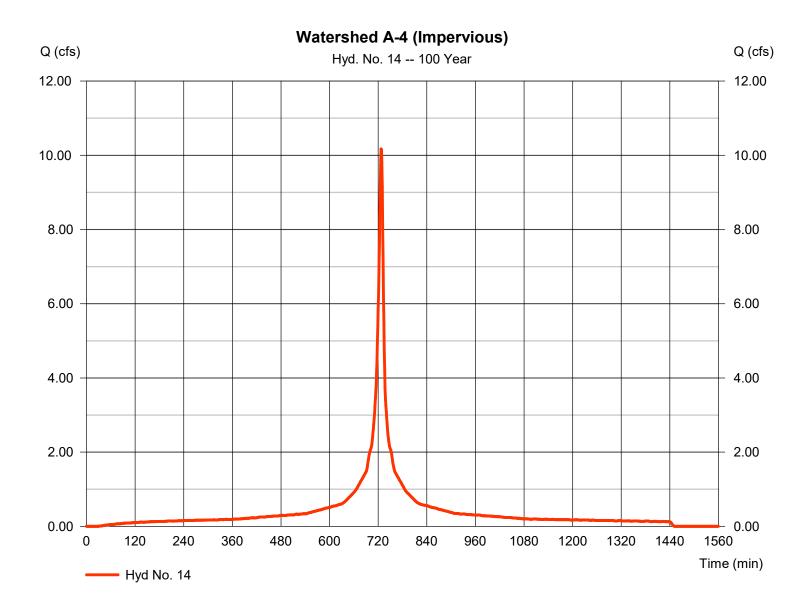

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 13

Watershed A-4 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 8.737 cfs
Storm frequency	= 100 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 39,377 cuft
Drainage area	= 1.710 ac	Curve number	= 80*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 17.00 min
Total precip.	= 8.84 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 30045561520ct&P roject D)at a_4384 cipline\Site Civil\Storr

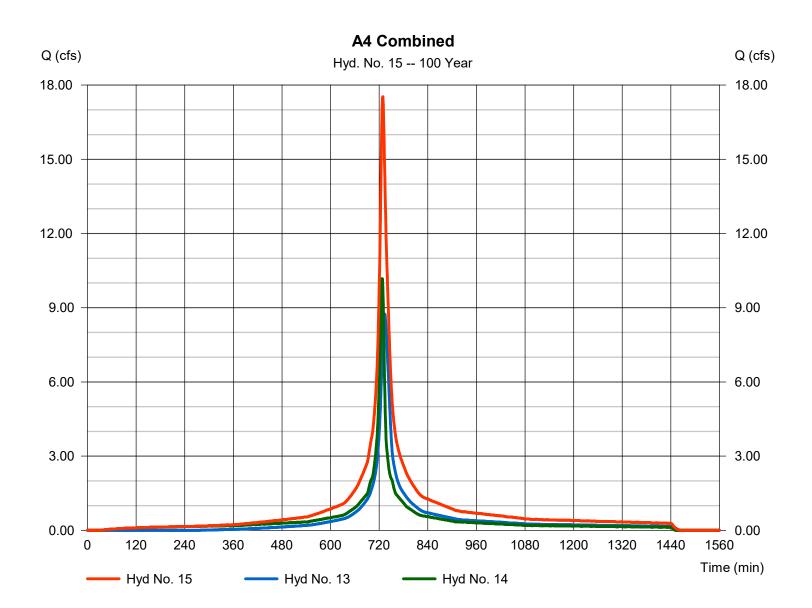
* Composite (Area/CN) = [(1.470 x 80) + (0.240 x 77)] / 1.710



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 14

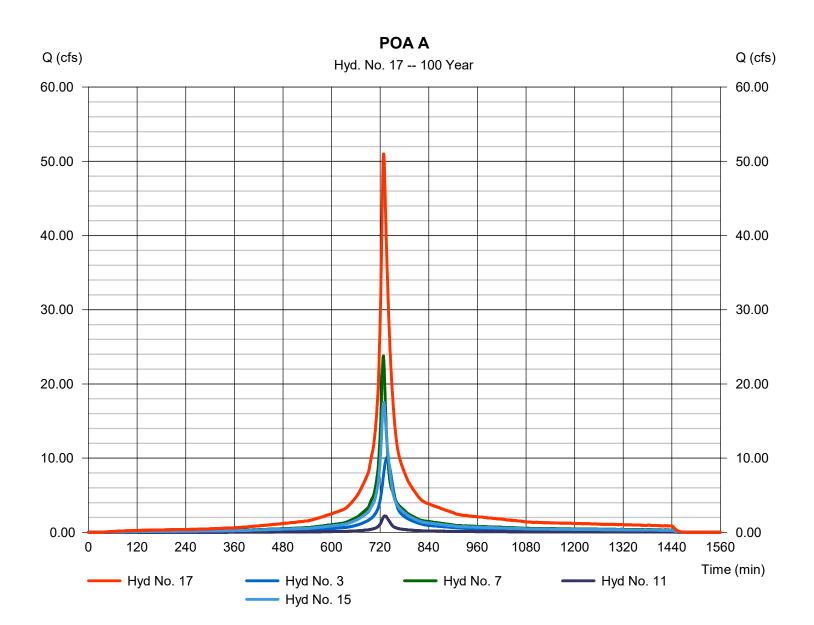
Watershed A-4 (Impervious)


Hydrograph type	= SCS Runoff	Peak discharge	= 10.18 cfs
Storm frequency	= 100 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 39,568 cuft
Drainage area	= 1.300 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 7.00 min
Total precip.	= 8.84 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	R\data0\800445e1640ctoProject D	at a∖_4384 cipline∖Site Civil∖Storr

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 15

A4 Combined

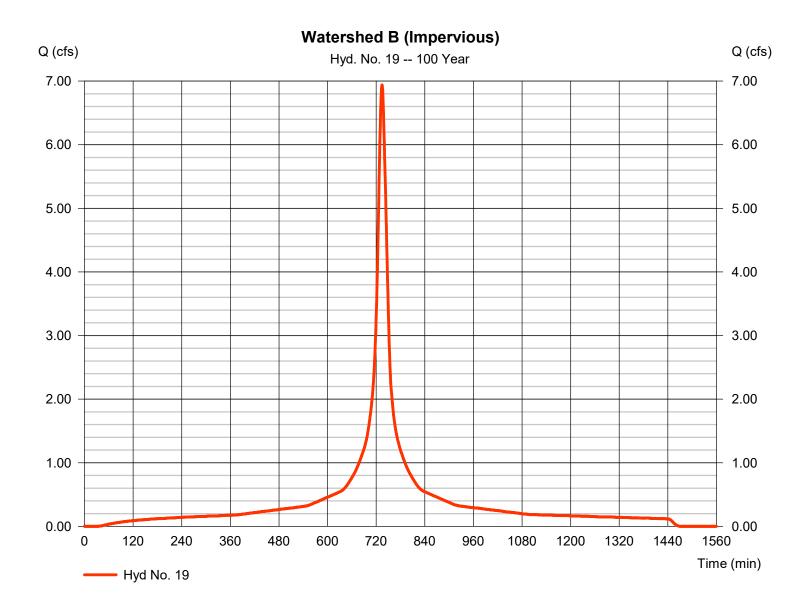

48

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 17

POA A

Hydrograph type	= Combine	Peak discharge	= 50.99 cfs
Storm frequency	= 100 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 234,742 cuft
Inflow hyds.	= 3, 7, 11, 15	Contrib. drain. area	= 0.000 ac

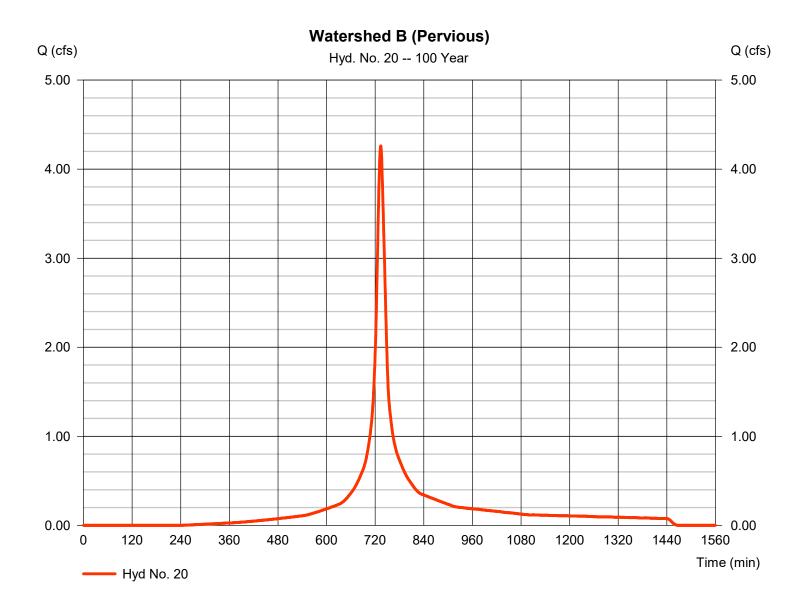


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 19

Watershed B (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 6.939 cfs
Storm frequency	= 100 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 37,148 cuft
Drainage area	= 1.190 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 8.84 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	AR\data0\ 800365eff20ctoP rojectD)at a∖_48st cipline∖Site Civil∖Storr

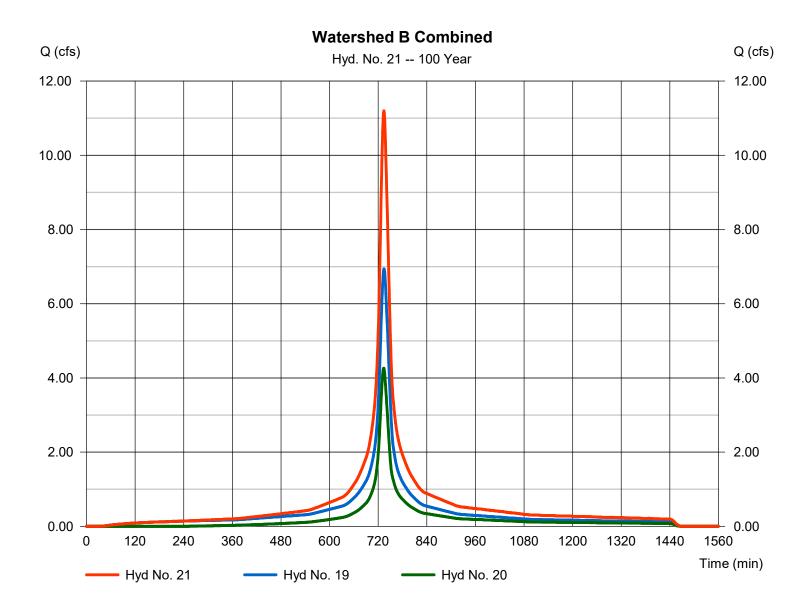


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 20

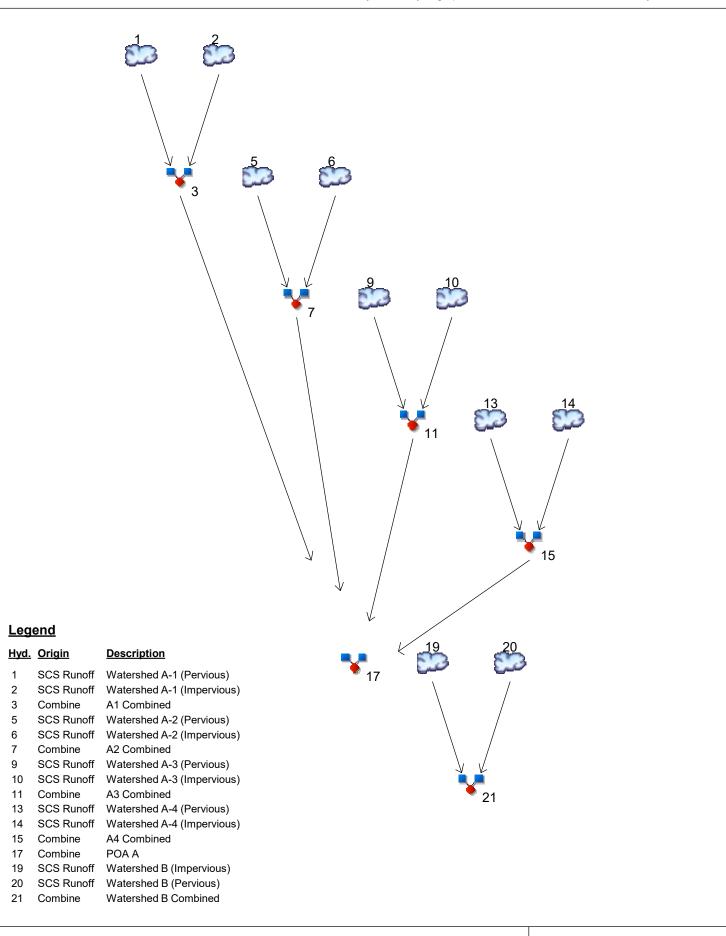
Watershed B (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 4.261 cfs
Storm frequency	= 100 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 19,362 cuft
Drainage area	= 0.810 ac	Curve number	= 82
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.00 min
Total precip.	= 8.84 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ \$00366ffactoP rojectD	Dat a∖_48e cipline∖Site Civil∖Storr



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 21


Watershed B Combined

Hydrograph type Storm frequency	= Combine = 100 yrs	Peak discharge Time to peak	= 11.20 cfs = 734 min
Time interval	$= 1 \min$	Hyd. volume	= 56,510 cuft
Inflow hyds.	= 19, 20	Contrib. drain. area	= 2.000 ac

Watershed Model Schematic

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Project: Existing Hydrographs_Future Precipitation.gpw

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Tuesday, 02 / 21 / 2023

Watershed Model Schematic	1
---------------------------	---

2 - Year

Summary Report	2
Hydrograph Reports	3
Hydrograph No. 1, SCS Runoff, Watershed A-1 (Pervious)	3
Hydrograph No. 2, SCS Runoff, Watershed A-1 (Impervious)	
Hydrograph No. 3, Combine, A1 Combined	
Hydrograph No. 5, SCS Runoff, Watershed A-2 (Pervious)	6
Hydrograph No. 6, SCS Runoff, Watershed A-2 (Impervious)	
Hydrograph No. 7, Combine, A2 Combined	8
Hydrograph No. 9, SCS Runoff, Watershed A-3 (Pervious)	9
Hydrograph No. 10, SCS Runoff, Watershed A-3 (Impervious)	. 10
Hydrograph No. 11, Combine, A3 Combined	. 11
Hydrograph No. 13, SCS Runoff, Watershed A-4 (Pervious)	. 12
Hydrograph No. 14, SCS Runoff, Watershed A-4 (Impervious)	. 13
Hydrograph No. 15, Combine, A4 Combined	. 14
Hydrograph No. 17, Combine, POA A	. 15
Hydrograph No. 19, SCS Runoff, Watershed B (Impervious)	. 16
Hydrograph No. 20, SCS Runoff, Watershed B (Pervious)	. 17
Hydrograph No. 21, Combine, Watershed B Combined	18

10 - Year

Summary Report	19
Hydrograph Reports	20
Hydrograph No. 1, SCS Runoff, Watershed A-1 (Pervious)	
Hydrograph No. 2, SCS Runoff, Watershed A-1 (Impervious)	21
Hydrograph No. 3, Combine, A1 Combined	22
Hydrograph No. 5, SCS Runoff, Watershed A-2 (Pervious)	23
Hydrograph No. 6, SCS Runoff, Watershed A-2 (Impervious)	24
Hydrograph No. 7, Combine, A2 Combined	25
Hydrograph No. 9, SCS Runoff, Watershed A-3 (Pervious)	26
Hydrograph No. 10, SCS Runoff, Watershed A-3 (Impervious)	27
Hydrograph No. 11, Combine, A3 Combined	28
Hydrograph No. 13, SCS Runoff, Watershed A-4 (Pervious)	29
Hydrograph No. 14, SCS Runoff, Watershed A-4 (Impervious)	30
Hydrograph No. 15, Combine, A4 Combined	31
Hydrograph No. 17, Combine, POA A	32
Hydrograph No. 19, SCS Runoff, Watershed B (Impervious)	33
Hydrograph No. 20, SCS Runoff, Watershed B (Pervious)	34
Hydrograph No. 21, Combine, Watershed B Combined	35

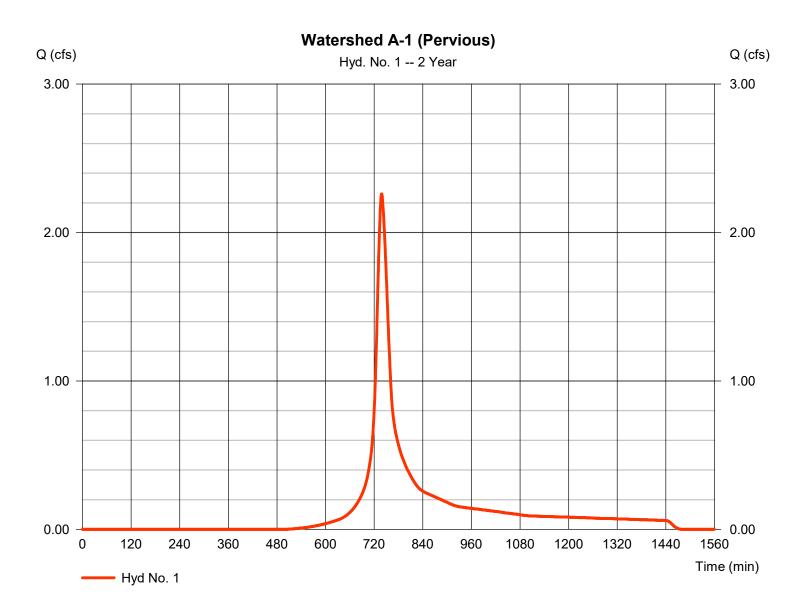
100 - Year

Summary Report	36
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, Watershed A-1 (Pervious)	
Hydrograph No. 2, SCS Runoff, Watershed A-1 (Impervious)	
Hydrograph No. 3, Combine, A1 Combined	

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

2 3	SCS Runoff		(min)	(min)	volume (cuft)	hyd(s)	elevation (ft)	strge used (cuft)	Description
3		2.260	1	739	11,544				Watershed A-1 (Pervious)
	SCS Runoff	1.326	1	734	6,915				Watershed A-1 (Impervious)
_	Combine	3.524	1	737	18,459	1, 2			A1 Combined
5	SCS Runoff	4.072	1	730	15,053				Watershed A-2 (Pervious)
6	SCS Runoff	5.316	1	727	19,156				Watershed A-2 (Impervious)
7	Combine	9.060	1	728	34,209	5, 6			A2 Combined
9	SCS Runoff	0.602	1	734	2,644				Watershed A-3 (Pervious)
10	SCS Runoff	0.209	1	727	793				Watershed A-3 (Impervious)
11	Combine	0.734	1	731	3,438	9, 10			A3 Combined
13	SCS Runoff	2.819	1	734	12,377				Watershed A-4 (Pervious)
14	SCS Runoff	4.539	1	727	17,186				Watershed A-4 (Impervious)
15	Combine	6.804	1	728	29,563	13, 14			A4 Combined
17	Combine	19.18	1	728	85,669	3, 7, 11, 15,			ΡΟΑΑ
19	SCS Runoff	3.094	1	734	16,135				Watershed B (Impervious)
20	SCS Runoff	1.442	1	734	6,329				Watershed B (Pervious)
21	Combine	4.536	1	734	22,464	19, 20			Watershed B Combined

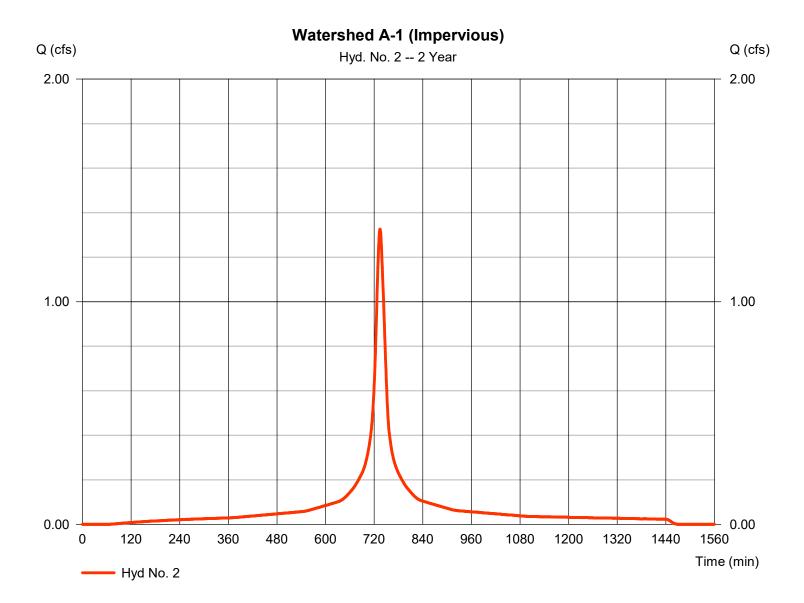

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Watershed A-1 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 2.260 cfs
Storm frequency	= 2 yrs	Time to peak	= 739 min
Time interval	= 1 min	Hyd. volume	= 11,544 cuft
Drainage area	= 1.640 ac	Curve number	= 79*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 25.00 min
Total precip.	= 3.97 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	AR\data0\80036561620ctoProjectD	0at a∖_48e cipline∖Site Civil∖Storr

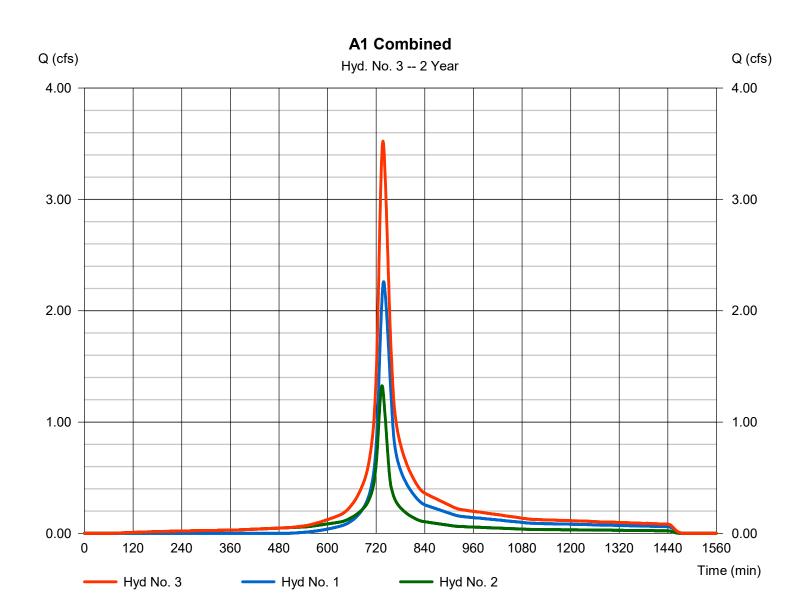
* Composite (Area/CN) = [(1.160 x 80) + (0.480 x 77)] / 1.640



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

Watershed A-1 (Impervious)

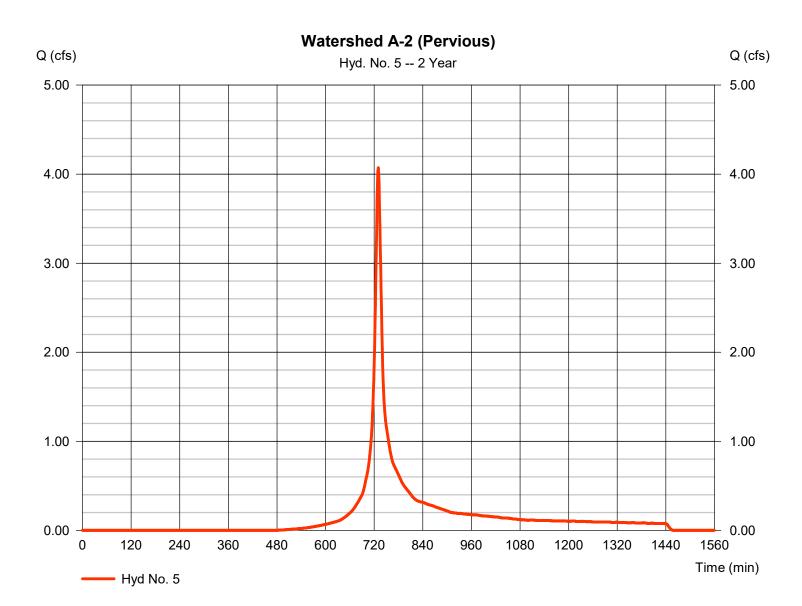

Hydrograph type	= SCS Runoff	Peak discharge	= 1.326 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 6,915 cuft
Drainage area	= 0.510 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 20.00 min
Total precip.	= 3.97 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	AR\data0\ 300365e1f20ctoP roject D	Dat a_484 cipline\Site Civil\Storr

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

A1 Combined

5

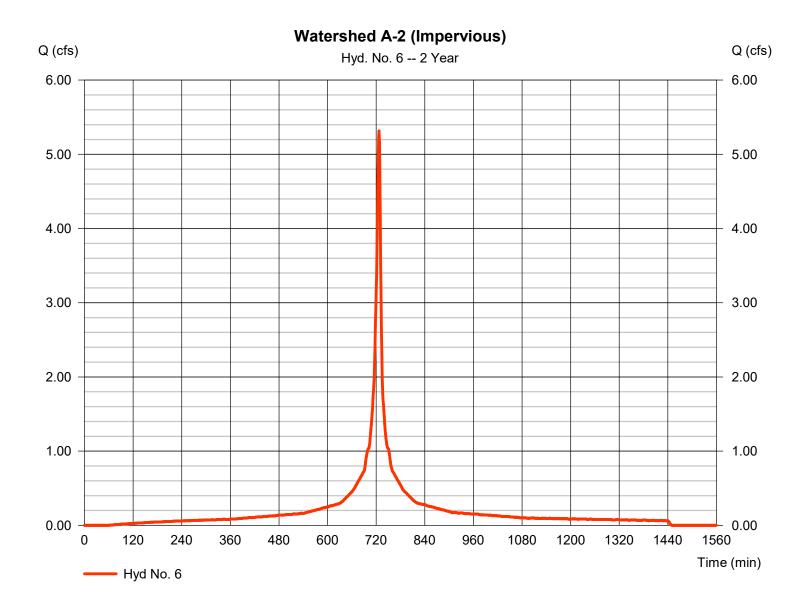

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

Watershed A-2 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 4.072 cfs
Storm frequency	= 2 yrs	Time to peak	= 730 min
Time interval	= 1 min	Hyd. volume	= 15,053 cuft
Drainage area	= 2.020 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 11.00 min
Total precip.	= 3.97 in	Distribution	= Custom
Storm duration	= \\langan.com\data\l	PAR\data0\ 800365elf20ctoP rojectD	Dat a_484 cipline\Site Civil\Storr

* Composite (Area/CN) = [(1.850 x 80) + (0.170 x 77)] / 2.020

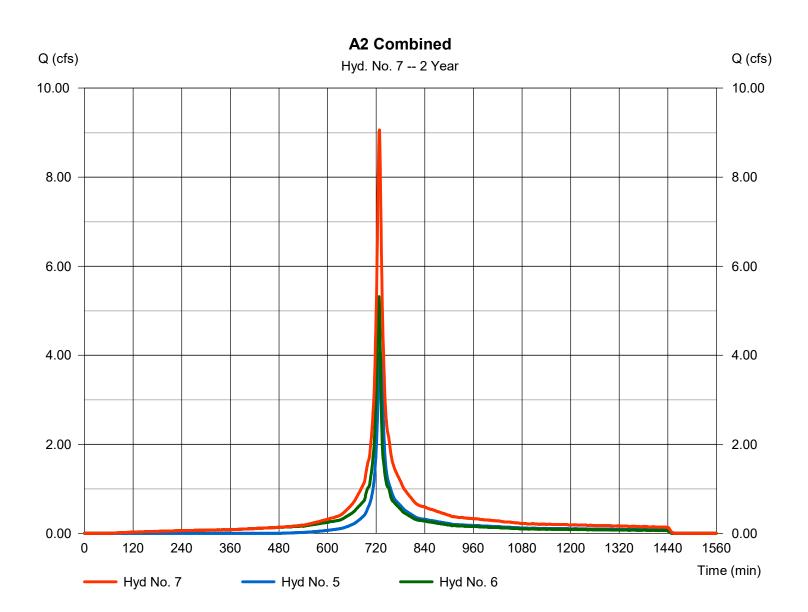


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

Watershed A-2 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 5.316 cfs
Storm frequency	= 2 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 19,156 cuft
Drainage area	= 1.370 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 3.97 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ \$00365e1620ctoP roject D	Dat a∖_48st cipline∖Site Civil∖Storr



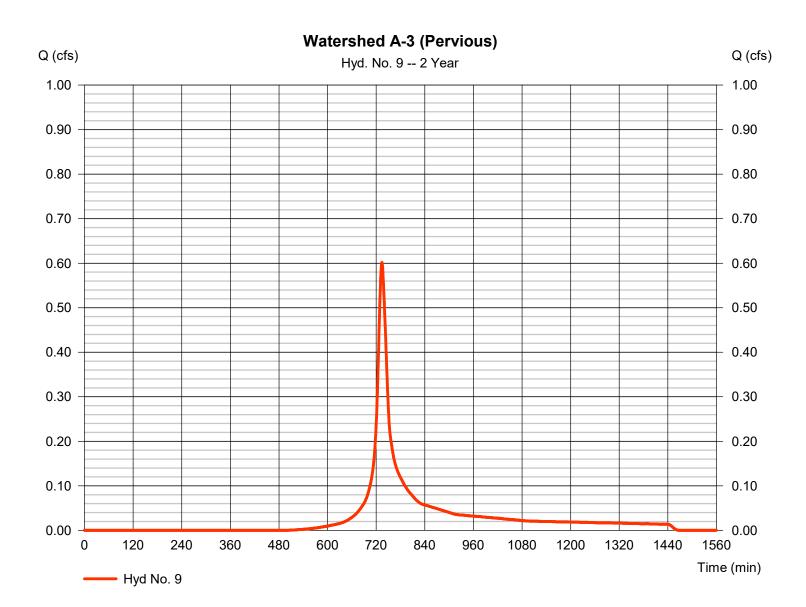
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

A2 Combined

Hydrograph type	= Combine	Peak discharge	= 9.060 cfs
Storm frequency	= 2 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 34,209 cuft
Inflow hyds.	= 5, 6	Contrib. drain. area	= 3.390 ac

8

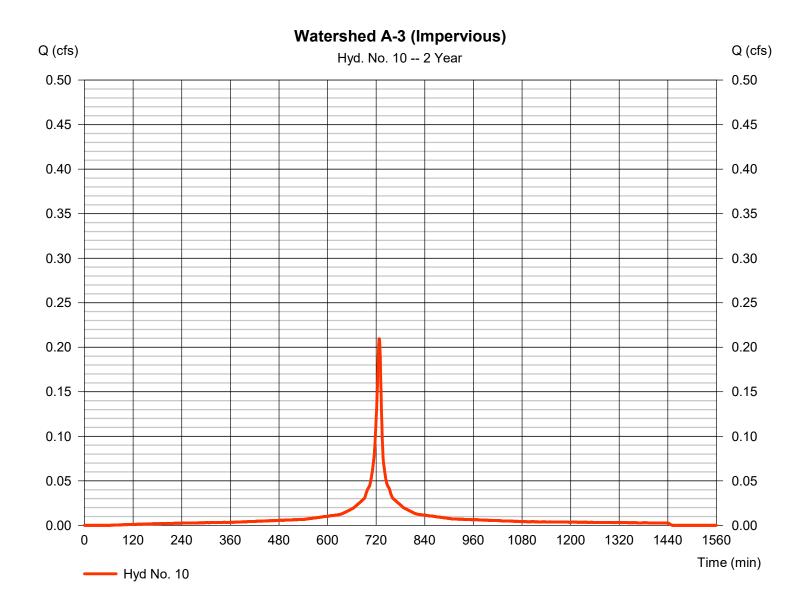

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Watershed A-3 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.602 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 2,644 cuft
Drainage area	= 0.380 ac	Curve number	= 79*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.00 min
Total precip.	= 3.97 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 800465e1640ctoP roject D	0at a∖_48s4 cipline∖Site Civil∖Storr

* Composite (Area/CN) = [(0.300 x 80) + (0.080 x 77)] / 0.380

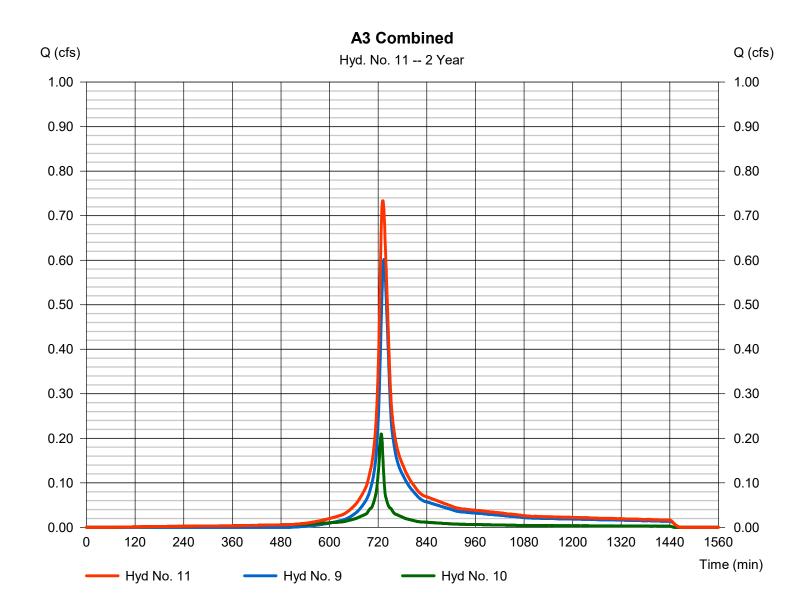


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Watershed A-3 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.209 cfs
Storm frequency	= 2 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 793 cuft
Drainage area	= 0.060 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 3.97 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300365e1620ctoP roject D	0at a∖_438 cipline∖Site Civil∖Storr

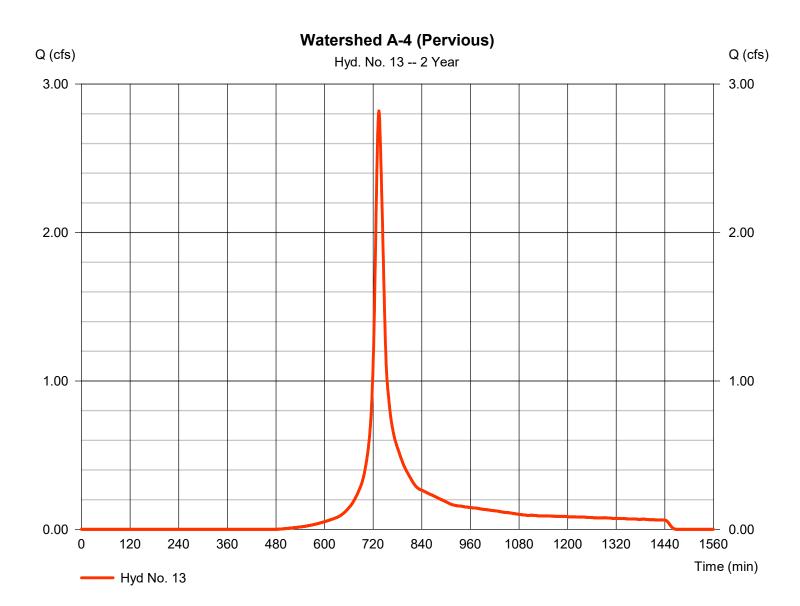


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

A3 Combined

Hydrograph type	= Combine	Peak discharge	= 0.734 cfs
Storm frequency	= 2 yrs	Time to peak	= 731 min
Time interval	= 1 min	Hyd. volume	= 3,438 cuft
Inflow hyds.	= 9, 10	Contrib. drain. area	= 0.440 ac

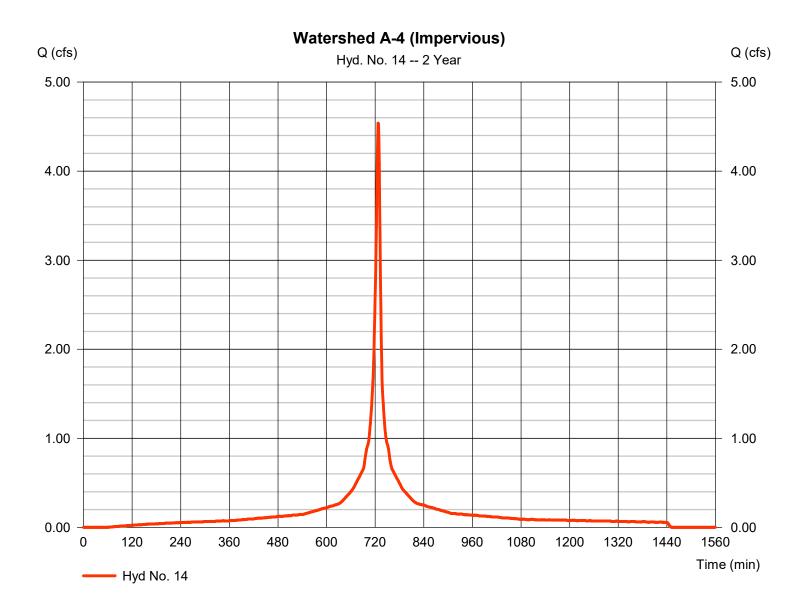

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 13

Watershed A-4 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 2.819 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 12,377 cuft
Drainage area	= 1.710 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 17.00 min
Total precip.	= 3.97 in	Distribution	= Custom
Storm duration	= \\langan.com\data\F	PAR\data0\ 3003561factoP roject D)at a∖_48t4 cipline∖Site Civil∖Storr

* Composite (Area/CN) = [(1.470 x 80) + (0.240 x 77)] / 1.710

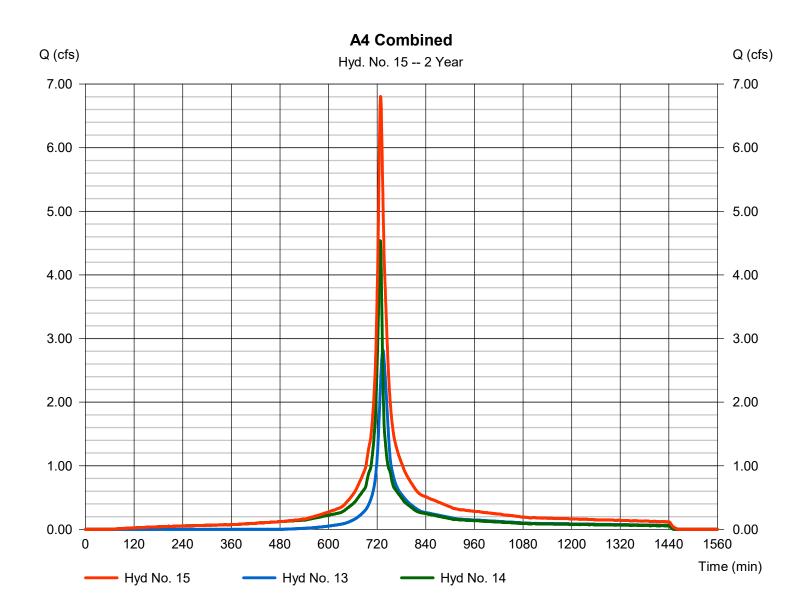


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 14

Watershed A-4 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 4.539 cfs
Storm frequency	= 2 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 17,186 cuft
Drainage area	= 1.300 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 7.00 min
Total precip.	= 3.97 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	\R\data0\ 300365elf20ctoP roject D	Dat a∖_43st cipline∖Site Civil∖Storr

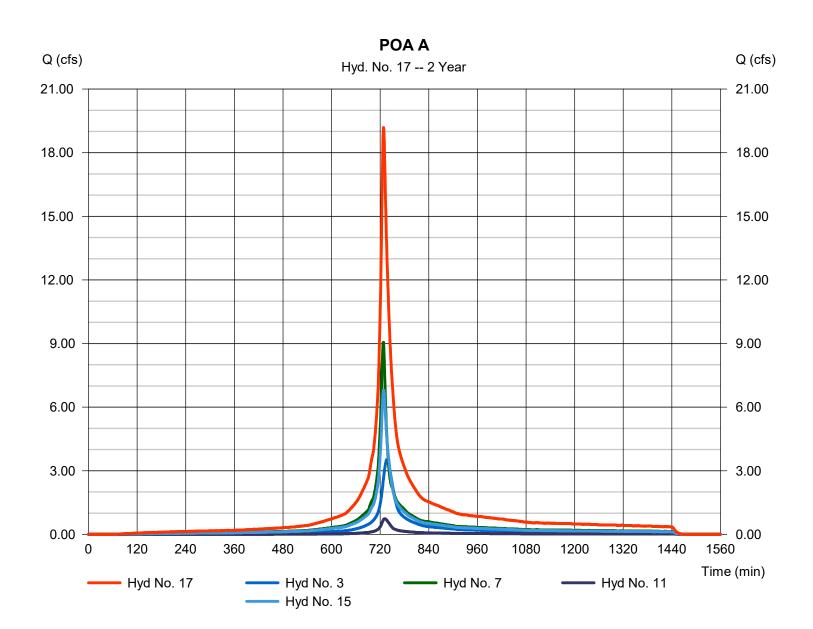


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 15

A4 Combined

Hydrograph type	= Combine	Peak discharge	= 6.804 cfs
Storm frequency	= 2 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 29,563 cuft
Inflow hyds.	= 13, 14	Contrib. drain. area	= 3.010 ac
-			

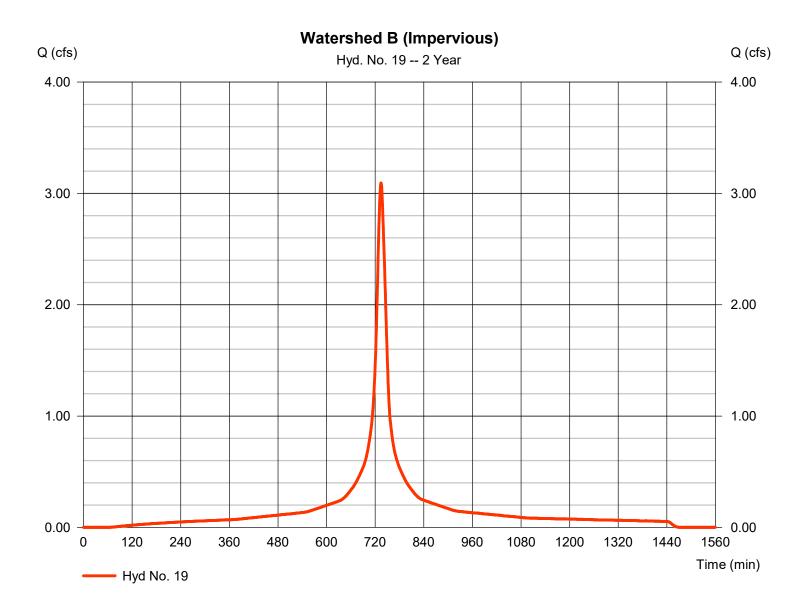

14

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 17

POA A

Storm frequency Time interval	 Combine 2 yrs 1 min 3, 7, 11, 15 	Peak discharge Time to peak Hyd. volume Contrib. drain. area	= 19.18 cfs = 728 min = 85,669 cuft = 0.000 ac
innow nyus.	- 3, 7, 11, 15	Contrib. drain. area	$= 0.000 \mathrm{ac}$

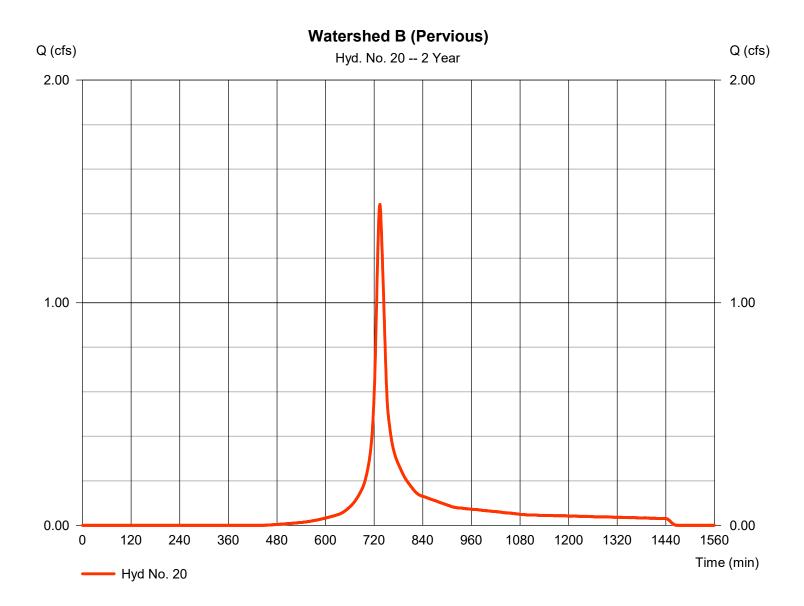


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 19

Watershed B (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 3.094 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 16,135 cuft
Drainage area	= 1.190 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 3.97 in	Distribution	= Custom
Storm duration	= \\langan.com\data\F	PAR\data0\ 300265e1620ctoP rojectD)at a∖_484 cipline\Site Civil\Storr

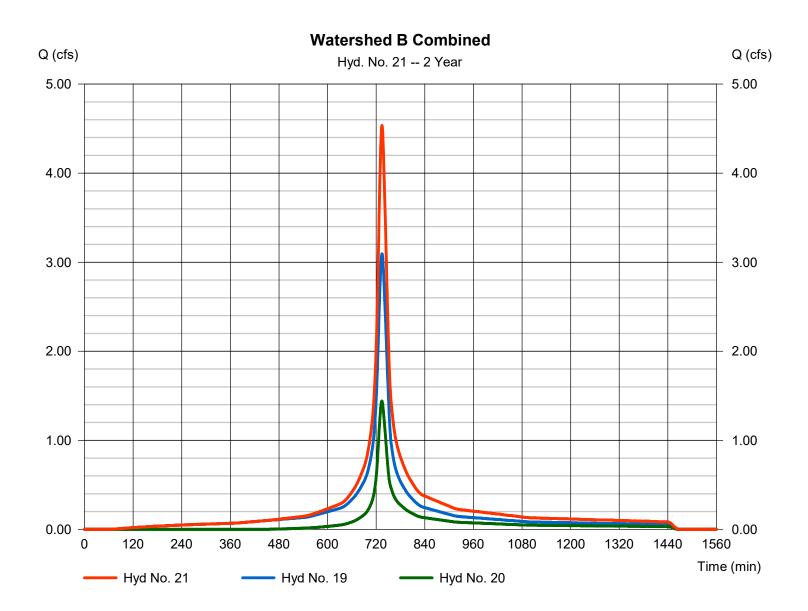


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 20

Watershed B (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.442 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 6,329 cuft
Drainage area	= 0.810 ac	Curve number	= 82
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.00 min
Total precip.	= 3.97 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ \$00365e1620ctoP rojectD	0at a∖_48e cipline∖Site Civil∖Storr



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 21

Watershed B Combined

Hydrograph type	= Combine	Peak discharge	= 4.536 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 22,464 cuft
Inflow hyds.	= 19, 20	Contrib. drain. area	= 2.000 ac

18

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	4.464	1	738	22,812				Watershed A-1 (Pervious)
2	SCS Runoff	2.072	1	734	10,981				Watershed A-1 (Impervious)
3	Combine	6.445	1	737	33,793	1, 2			A1 Combined
5	SCS Runoff	7.856	1	730	29,369				Watershed A-2 (Pervious)
6	SCS Runoff	8.300	1	727	30,421				Watershed A-2 (Impervious)
7	Combine	15.66	1	728	59,790	5, 6			A2 Combined
9	SCS Runoff	1.184	1	734	5,226				Watershed A-3 (Pervious)
10	SCS Runoff	0.327	1	727	1,260				Watershed A-3 (Impervious)
11	Combine	1.392	1	732	6,485	9, 10			A3 Combined
13	SCS Runoff	5.459	1	734	24,148				Watershed A-4 (Pervious)
14	SCS Runoff	7.089	1	727	27,292				Watershed A-4 (Impervious)
15	Combine	11.61	1	729	51,440	13, 14			A4 Combined
17	Combine	33.42	1	728	151,508	3, 7, 11, 15,			ΡΟΑΑ
19	SCS Runoff	4.834	1	734	25,623				Watershed B (Impervious)
20	SCS Runoff	2.707	1	734	12,046				Watershed B (Pervious)
21	Combine	7.541	1	734	37,669	19, 20			Watershed B Combined
Exi	sting Hydrogi	raphs Fut	ture Prec	ipitation o	nowReturn F	Period: 10 V	/ear	Tuesday ()2 / 21 / 2023

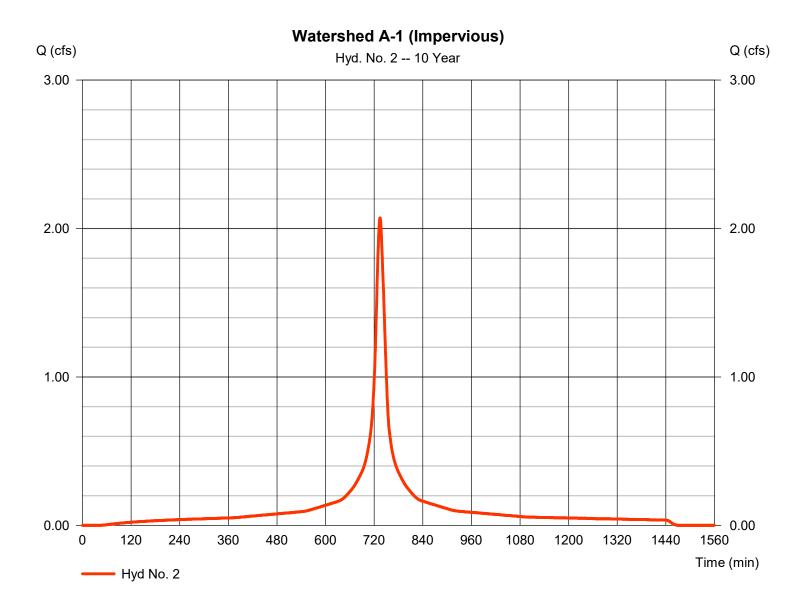

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Watershed A-1 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 4.464 cfs
Storm frequency	= 10 yrs	Time to peak	= 738 min
Time interval	= 1 min	Hyd. volume	= 22,812 cuft
Drainage area	= 1.640 ac	Curve number	= 79*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 25.00 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= \\langan.com\data\F	PAR\data0\ 300365elf20ctoP rojectD)at a_434 cipline\Site Civil\Storr

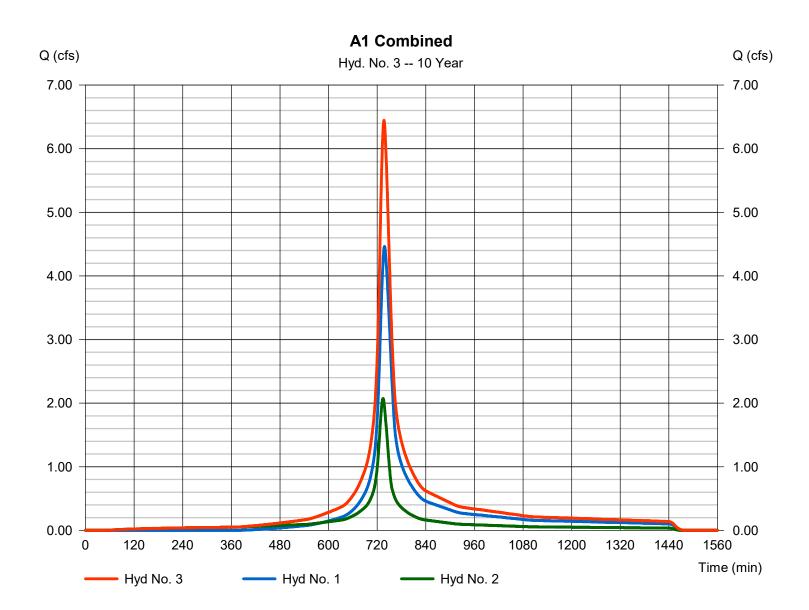
* Composite (Area/CN) = [(1.160 x 80) + (0.480 x 77)] / 1.640



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

Watershed A-1 (Impervious)

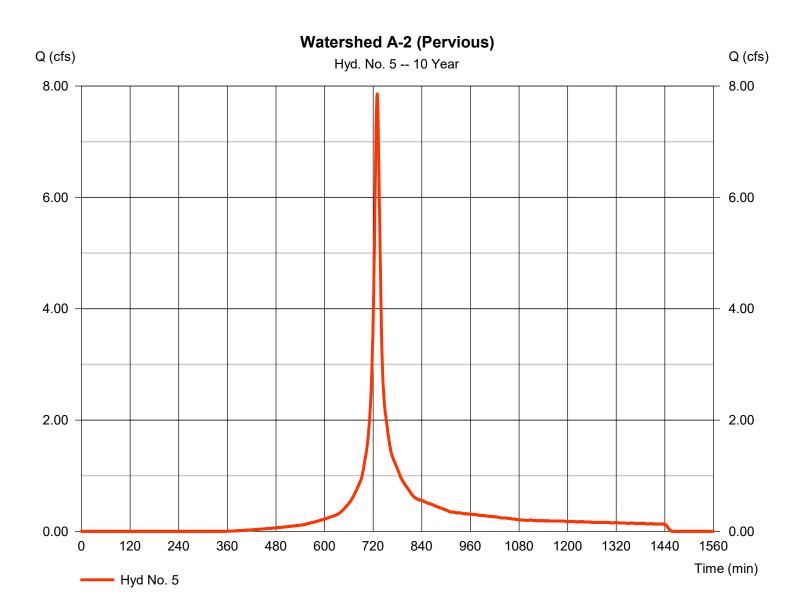

Hydrograph type	= SCS Runoff	Peak discharge	= 2.072 cfs
Storm frequency	= 10 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 10,981 cuft
Drainage area	= 0.510 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 20.00 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	AR\data0\ 800365elf20ctoP rojectD	Dat a_484 cipline\Site Civil\Storn

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

A1 Combined

22

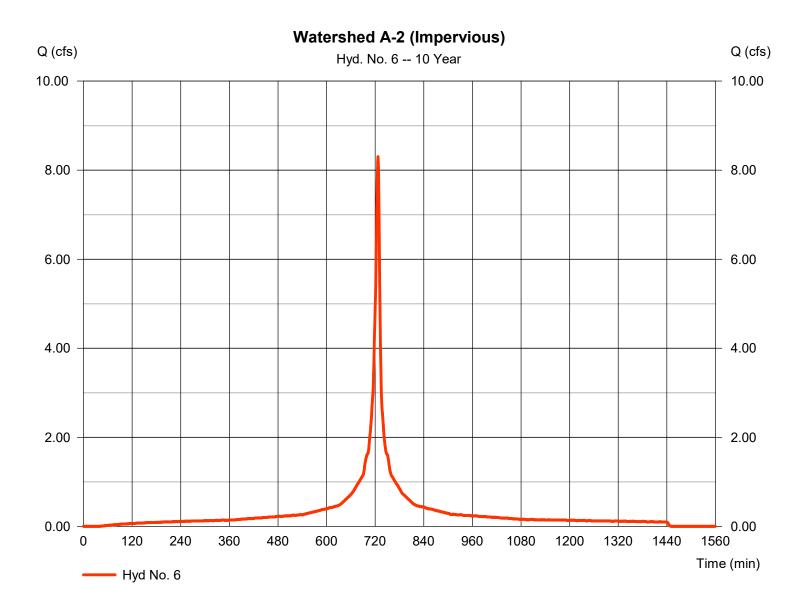

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

Watershed A-2 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 7.856 cfs
Storm frequency	= 10 yrs	Time to peak	= 730 min
Time interval	= 1 min	Hyd. volume	= 29,369 cuft
Drainage area	= 2.020 ac	Curve number	= 80*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 11.00 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 3004661620ctoP roject D	0at a_484 cipline\Site Civil\Storr

* Composite (Area/CN) = [(1.850 x 80) + (0.170 x 77)] / 2.020

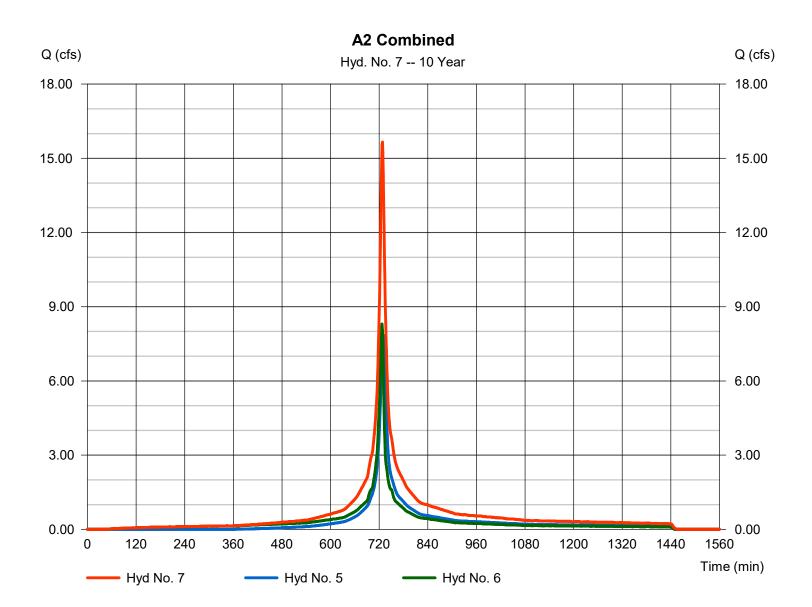


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

Watershed A-2 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 8.300 cfs
Storm frequency	= 10 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 30,421 cuft
Drainage area	= 1.370 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= \\langan.com\data\F	PAR\data0\ 300265e1620ctoP rojectD	0at a∖_48e cipline∖Site Civil∖Storr

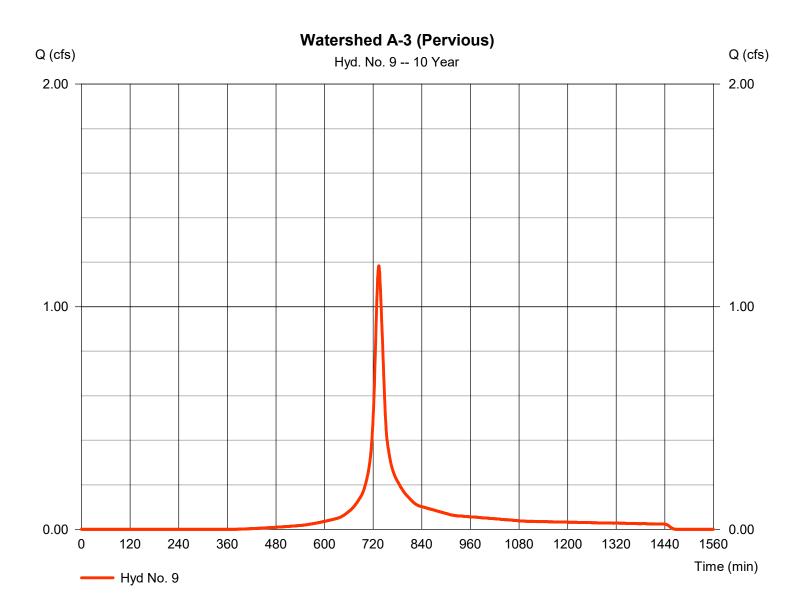


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

A2 Combined

Hydrograph type	= Combine	Peak discharge	= 15.66 cfs
Storm frequency	= 10 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 59,790 cuft
Inflow hyds.	= 5, 6	Contrib. drain. area	= 3.390 ac

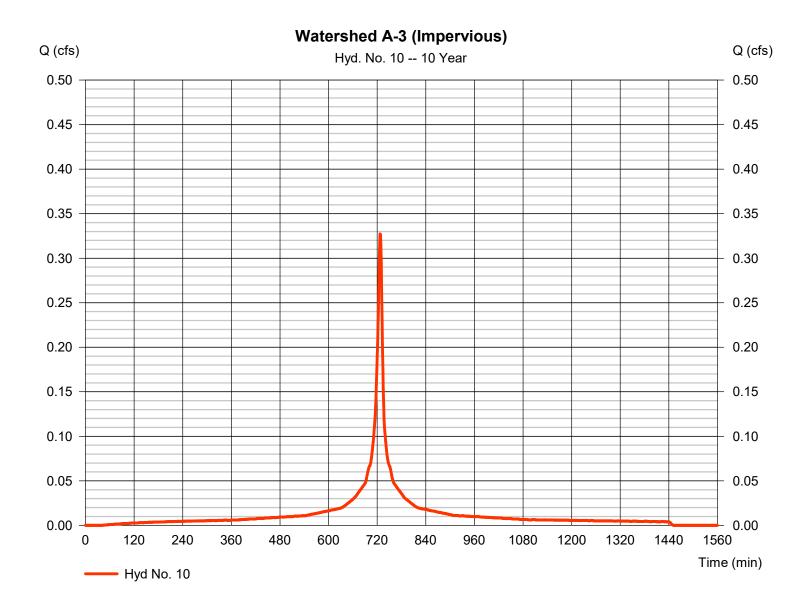

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Watershed A-3 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.184 cfs
Storm frequency	= 10 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 5,226 cuft
Drainage area	= 0.380 ac	Curve number	= 79*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.00 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300366ffactoP rojectD)at a_434 cipline\Site Civil\Storr

* Composite (Area/CN) = [(0.300 x 80) + (0.080 x 77)] / 0.380

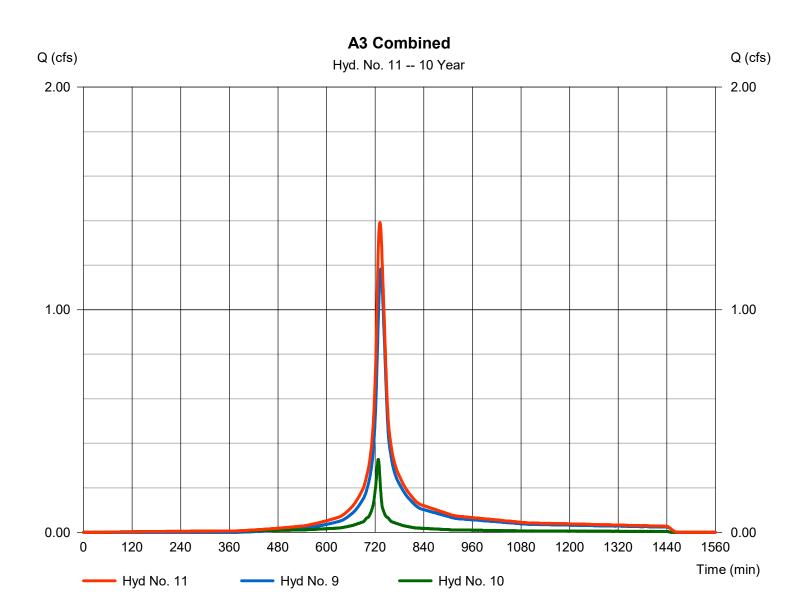


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Watershed A-3 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.327 cfs
Storm frequency	= 10 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 1,260 cuft
Drainage area	= 0.060 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	\R\data0\ 800365eff20ctoP roject D	Dat a_484 cipline\Site Civil\Storr

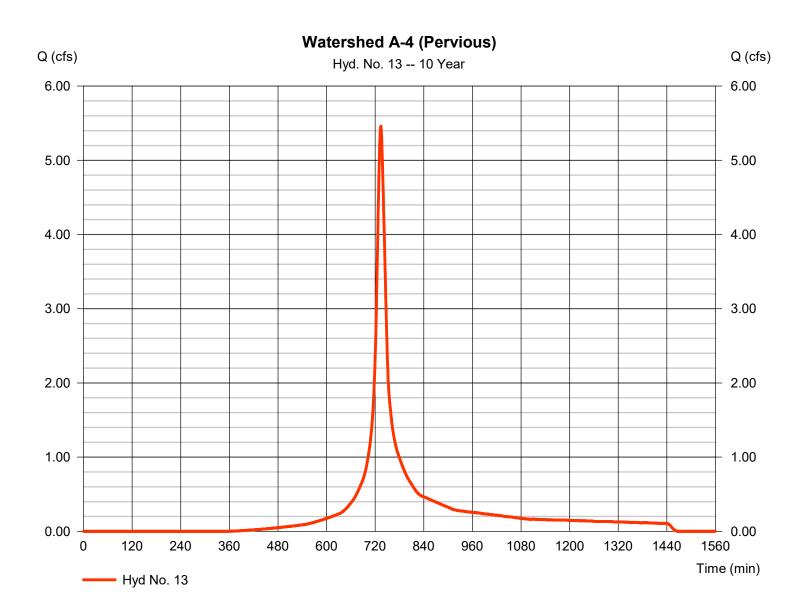


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

A3 Combined

Storm frequency= 10 yrsTime to peak= 732 minTime interval= 1 minHyd. volume= 6,485 cuftInflow hyds.= 9, 10Contrib. drain. area= 0.440 ac	Time interval	= 1 min	Hyd. volume	= 6,485 cuft
--	---------------	---------	-------------	--------------

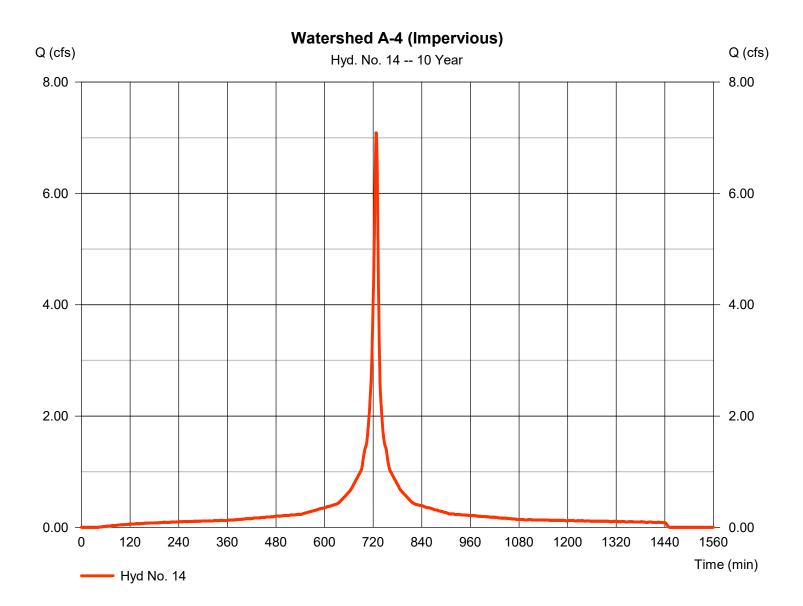

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 13

Watershed A-4 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 5.459 cfs
Storm frequency	= 10 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 24,148 cuft
Drainage area	= 1.710 ac	Curve number	= 80*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 17.00 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= \\langan.com\data\F	PAR\data0\ 800265e1620ctoP roject D	Dat a_4384 cipline\Site Civil\Storr

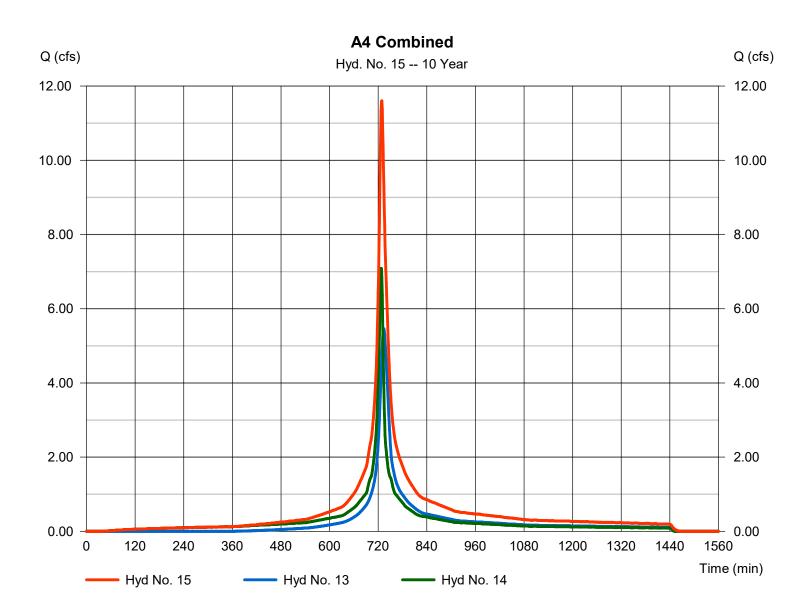
* Composite (Area/CN) = [(1.470 x 80) + (0.240 x 77)] / 1.710



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 14

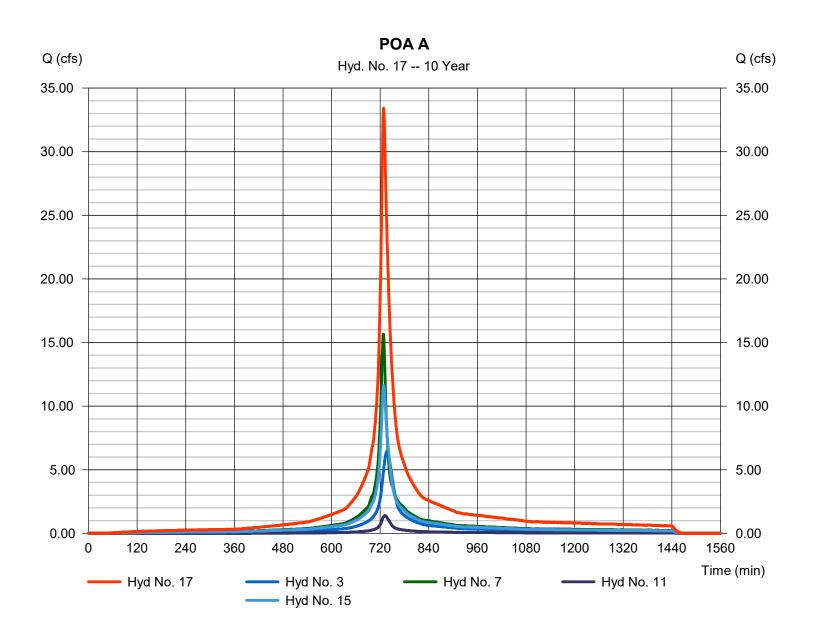
Watershed A-4 (Impervious)


Hydrograph type	= SCS Runoff	Peak discharge	= 7.089 cfs
Storm frequency	= 10 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 27,292 cuft
Drainage area	= 1.300 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 7.00 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	\R\data0\ 300365elf20ctoP rojectD	0at a_4384 cipline\Site Civil\Storr

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 15

A4 Combined

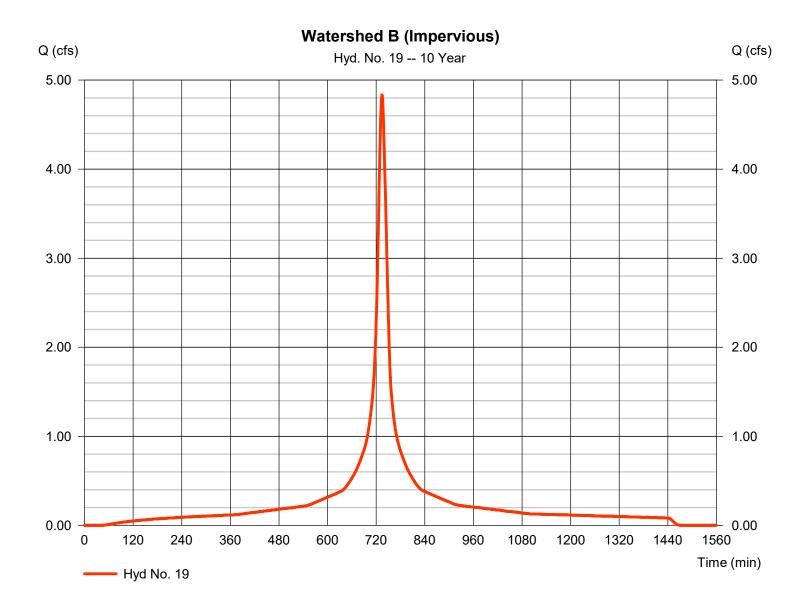

31

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 17

POA A

Hydrograph type	= Combine	Peak discharge	= 33.42 cfs
Storm frequency	= 10 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 151,508 cuft
Inflow hyds.	= 3, 7, 11, 15	Contrib. drain. area	= 0.000 ac

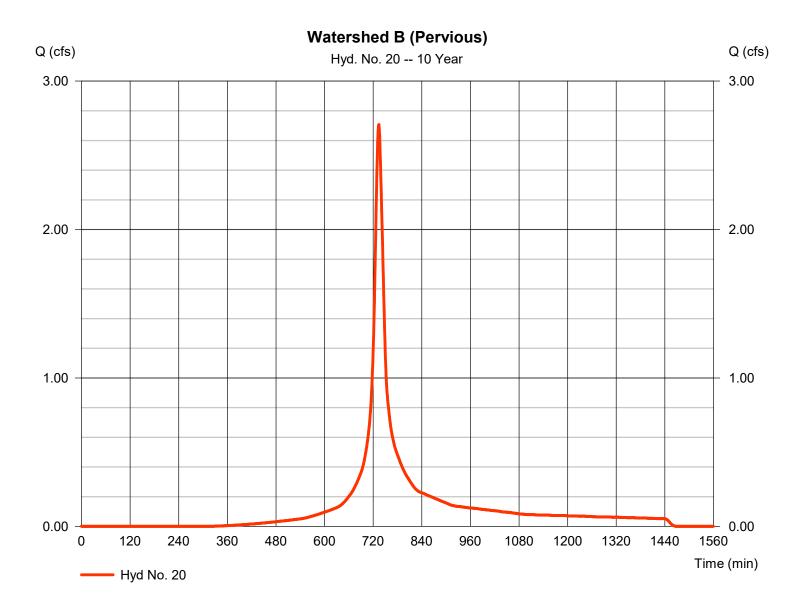

32

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 19

Watershed B (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 4.834 cfs
Storm frequency	= 10 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 25,623 cuft
Drainage area	= 1.190 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	AR\data0\ 800365eff20ctoP rojectD	Dat a_484 cipline\Site Civil\Storn

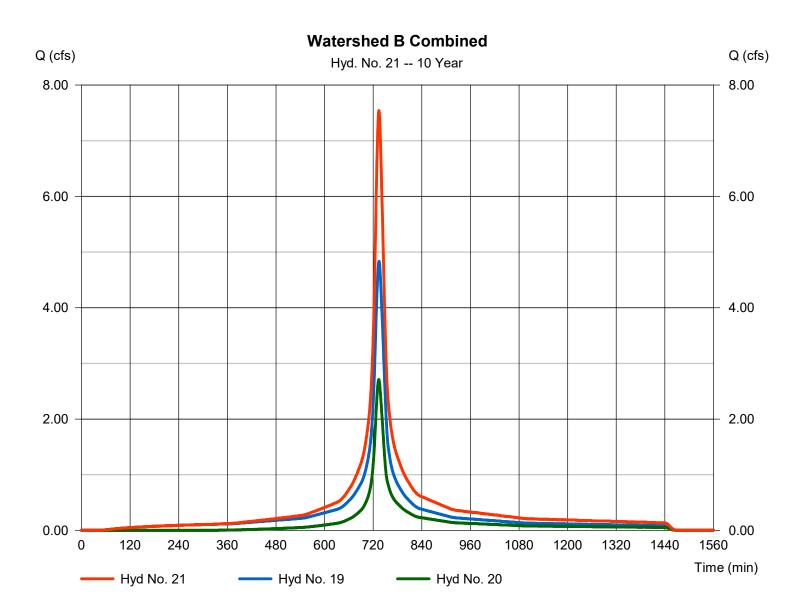


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 20

Watershed B (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 2.707 cfs
Storm frequency	= 10 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 12,046 cuft
Drainage area	= 0.810 ac	Curve number	= 82
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.00 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300365eff20ctoP rojectD	0at a∖_48e cipline∖Site Civil∖Storr


34

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 21

Watershed B Combined

Hydrograph type Storm frequency	= Combine = 10 yrs	Peak discharge Time to peak	= 7.541 cfs = 734 min
Time interval	= 1 min	Hyd. volume	= 37,669 cuft
Inflow hyds.	= 19, 20	Contrib. drain. area	= 2.000 ac

35

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	9.882	1	738	52,044				Watershed A-1 (Pervious)
2	SCS Runoff	3.842	1	734	20,677				Watershed A-1 (Impervious)
3	Combine	13.57	1	737	72,720	1, 2			A1 Combined
5	SCS Runoff	17.05	1	730	66,247				Watershed A-2 (Pervious)
6	SCS Runoff	15.39	1	727	57,279				Watershed A-2 (Impervious)
7	Combine	31.56	1	728	123,526	5, 6			A2 Combined
9	SCS Runoff	2.612	1	734	11,922				Watershed A-3 (Pervious)
10	SCS Runoff	0.607	1	727	2,372				Watershed A-3 (Impervious)
11	Combine	3.006	1	732	14,294	9, 10			A3 Combined
13	SCS Runoff	11.89	1	734	54,470				Watershed A-4 (Pervious)
14	SCS Runoff	13.14	1	727	51,387				Watershed A-4 (Impervious)
15	Combine	23.24	1	729	105,858	13, 14			A4 Combined
17	Combine	67.92	1	728	316,397	3, 7, 11, 15,			ΡΟΑΑ
19	SCS Runoff	8.964	1	734	48,245				Watershed B (Impervious)
20	SCS Runoff	5.747	1	734	26,574				Watershed B (Pervious)
21	Combine	14.71	1	734	74,820	19, 20			Watershed B Combined
Exi	sting Hydrogi	aphs Fu	ture Prec	ipitation (nowReturn F	Period· 100	Year	Tuesday ()2 / 21 / 2023

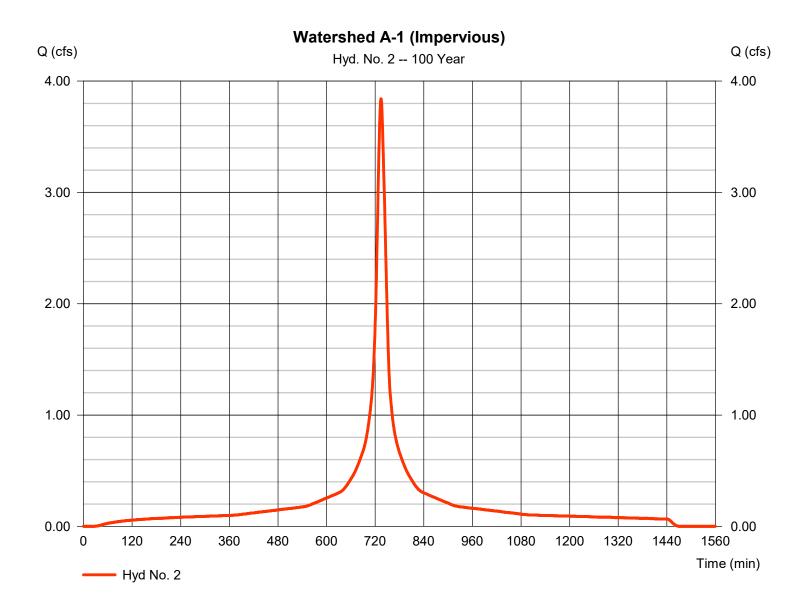
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

Watershed A-1 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 9.882 cfs
Storm frequency	= 100 yrs	Time to peak	= 738 min
Time interval	= 1 min	Hyd. volume	= 52,044 cuft
Drainage area	= 1.640 ac	Curve number	= 79*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 25.00 min
Total precip.	= 11.41 in	Distribution	= Custom
Storm duration	= \\langan.com\data\F	PAR\data0\ 800365eff20ctoP rojectD)at a_434 cipline\Site Civil\Storr

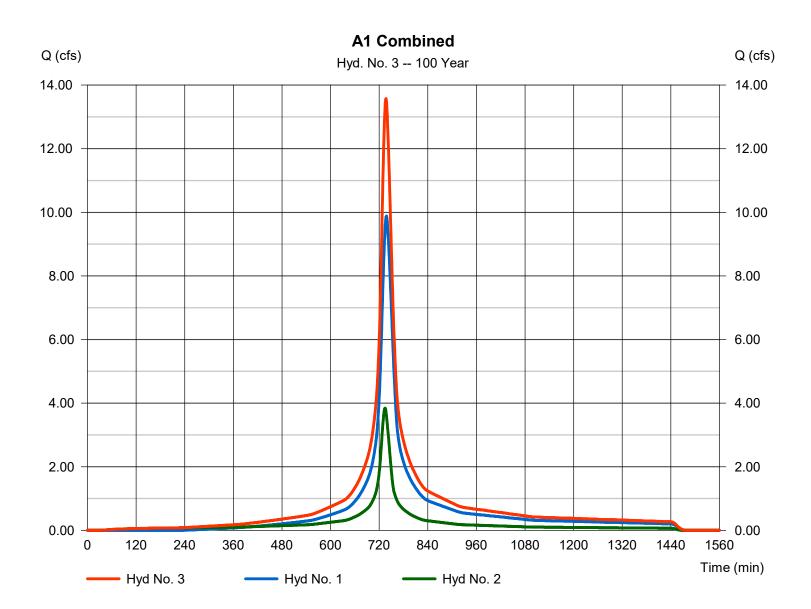
* Composite (Area/CN) = [(1.160 x 80) + (0.480 x 77)] / 1.640



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

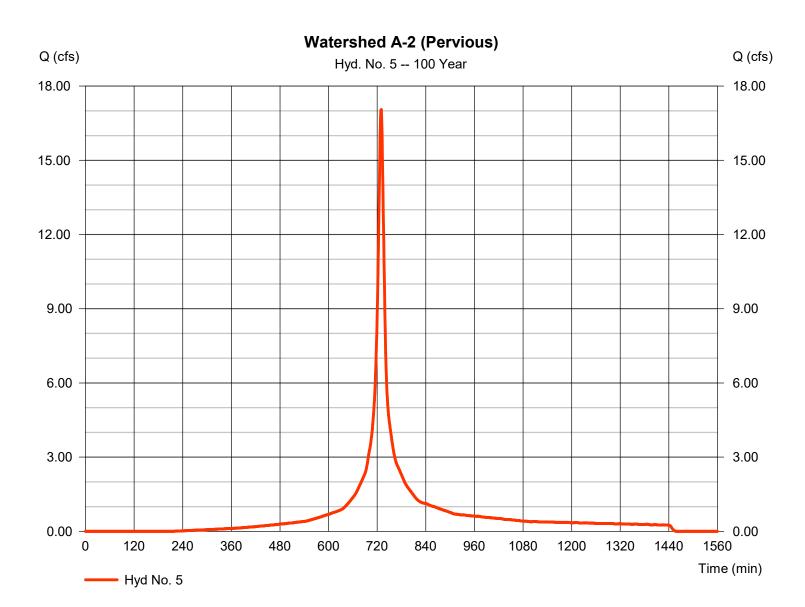
Watershed A-1 (Impervious)


Hydrograph type	= SCS Runoff	Peak discharge	= 3.842 cfs
Storm frequency	= 100 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 20,677 cuft
Drainage area	= 0.510 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 20.00 min
Total precip.	= 11.41 in	Distribution	= Custom
Storm duration	= \\langan.com\data\F	PAR\data0\ 800245e1f20ctoP rojectD)at a∖_48t4 cipline∖Site Civil∖Storr

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

A1 Combined

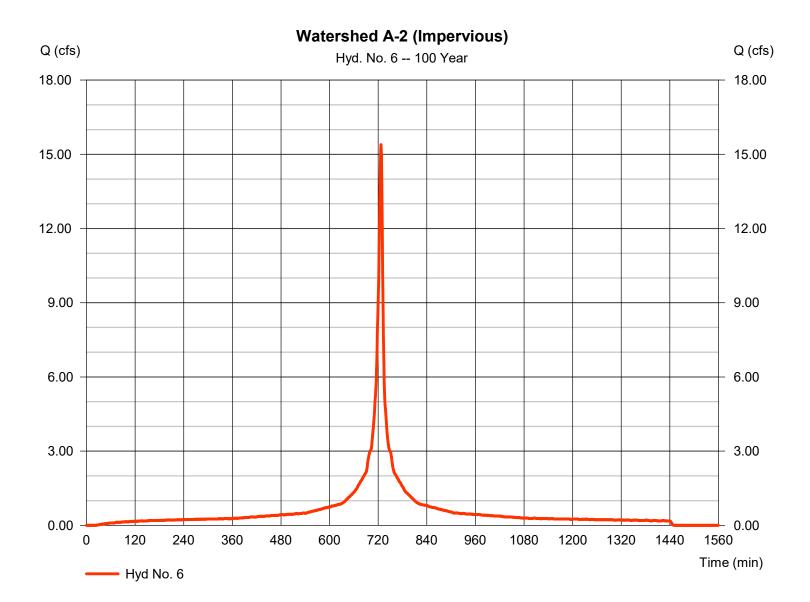

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 5

Watershed A-2 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 17.05 cfs
Storm frequency	= 100 yrs	Time to peak	= 730 min
Time interval	= 1 min	Hyd. volume	= 66,247 cuft
Drainage area	= 2.020 ac	Curve number	= 80*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 11.00 min
Total precip.	= 11.41 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300365eff20ctoP rojectD	0at a_484 cipline\Site Civil\Storr

* Composite (Area/CN) = [(1.850 x 80) + (0.170 x 77)] / 2.020

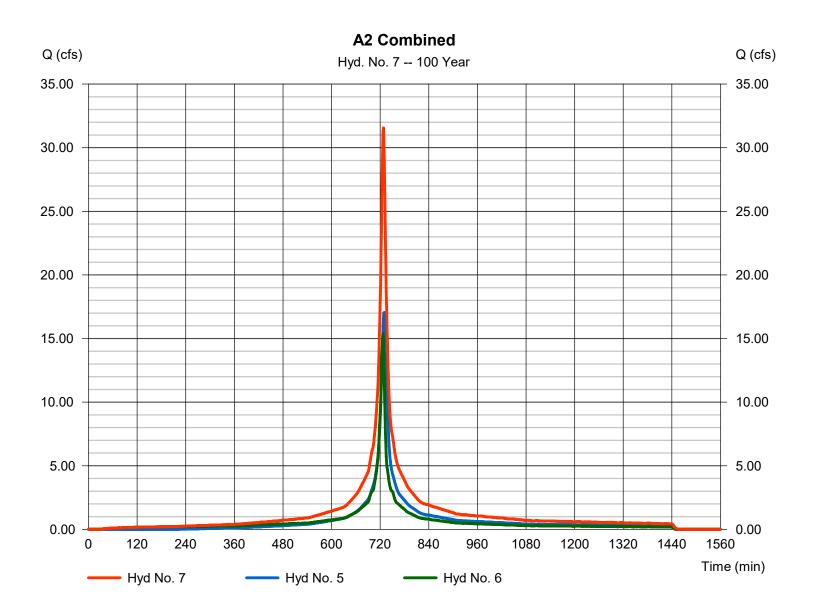


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

Watershed A-2 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 15.39 cfs
Storm frequency	= 100 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 57,279 cuft
Drainage area	= 1.370 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 6.00 min
Total precip.	= 11.41 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	AR\data0\ 8003561520ctoP rojectD	0at a∖_48e cipline∖Site Civil∖Storr

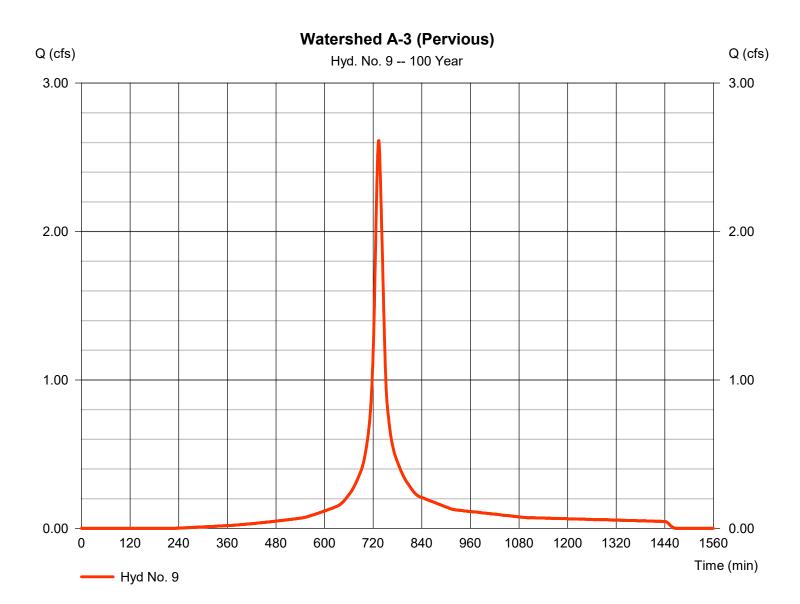


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

A2 Combined

Hydrograph type	= Combine	Peak discharge	= 31.56 cfs
Storm frequency	= 100 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 123,526 cuft
Inflow hyds.	= 5, 6	Contrib. drain. area	= 3.390 ac

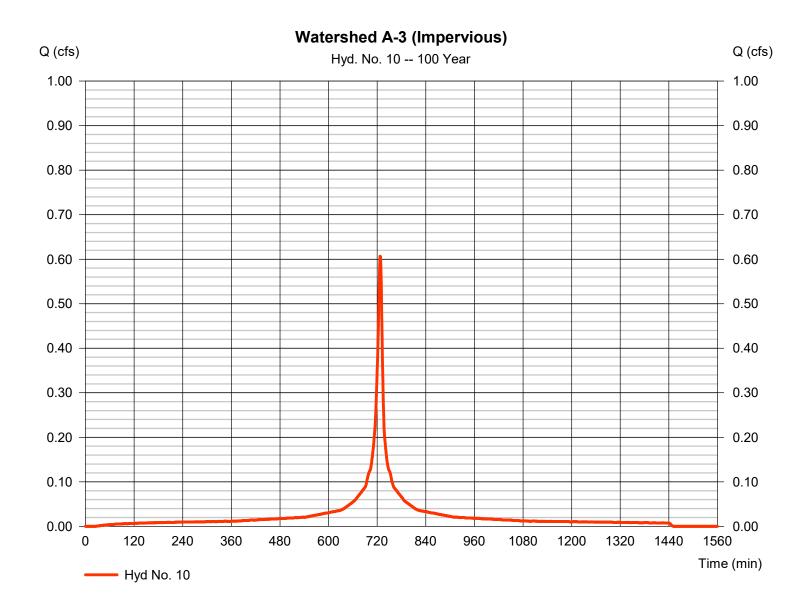

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Watershed A-3 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 2.612 cfs
Storm frequency	= 100 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 11,922 cuft
Drainage area	= 0.380 ac	Curve number	= 79*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.00 min
Total precip.	= 11.41 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	PAR\data0\1800465e1120c1&Project D)at a_4384 cipline\Site Civil\Storr

* Composite (Area/CN) = [(0.300 x 80) + (0.080 x 77)] / 0.380

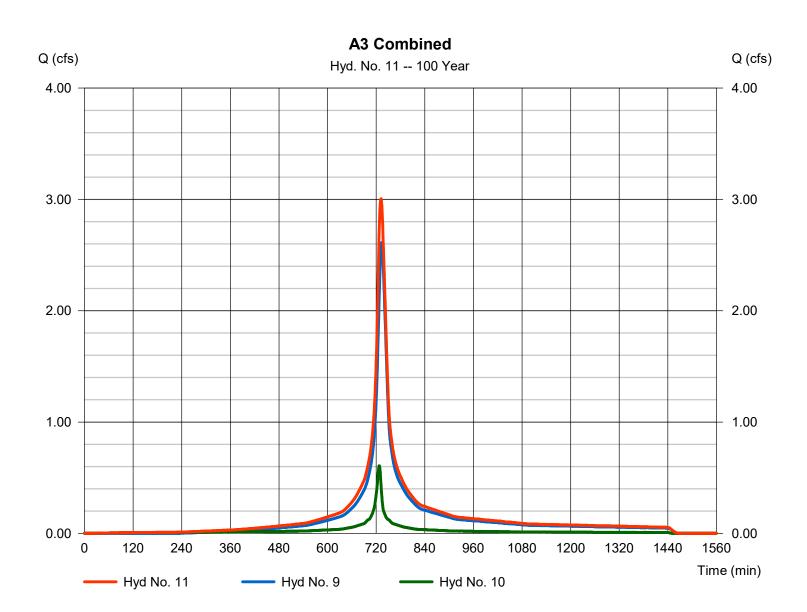

43

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 10

Watershed A-3 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.607 cfs
Storm frequency	= 100 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 2,372 cuft
Drainage area	= 0.060 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 11.41 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300366ffactoP rojectD)at a∖_43st cipline∖Site Civil∖Storr

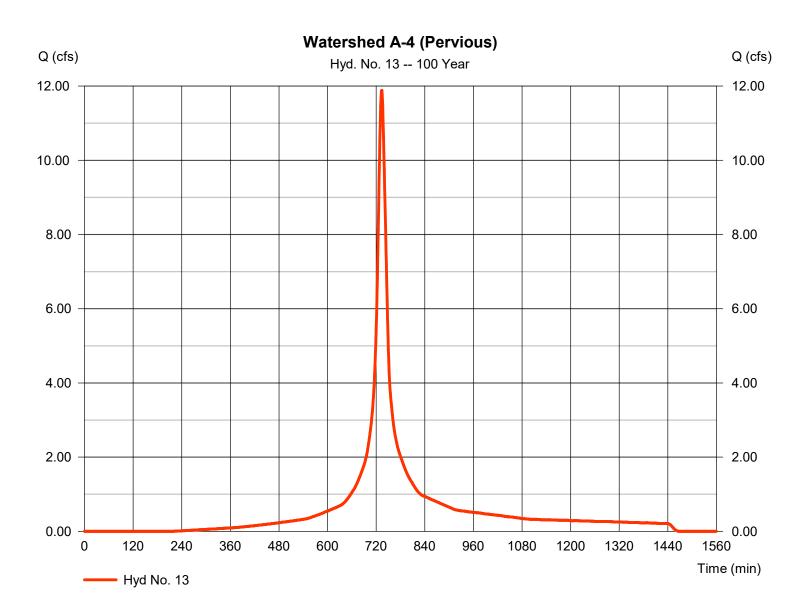

44

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

A3 Combined

Hydrograph type= CombineStorm frequency= 100 yrsTime interval= 1 minInflow hyds.= 9, 10	Peak discharge Time to peak Hyd. volume Contrib. drain. area	= 3.006 cfs = 732 min = 14,294 cuft = 0.440 ac
---	---	---

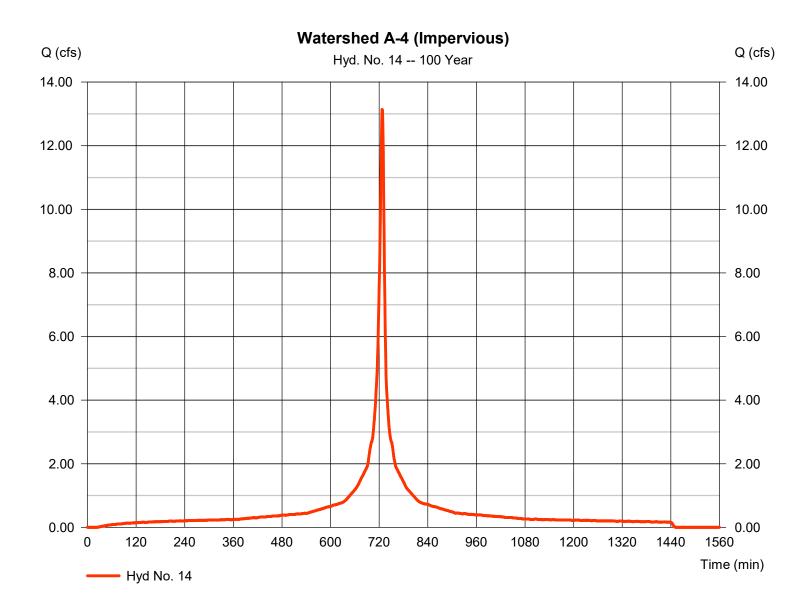

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 13

Watershed A-4 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 11.89 cfs
Storm frequency	= 100 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 54,470 cuft
Drainage area	= 1.710 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 17.00 min
Total precip.	= 11.41 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 800465e1640ctoP rojectD	Dat a_434 cipline\Site Civil\Storr

* Composite (Area/CN) = [(1.470 x 80) + (0.240 x 77)] / 1.710

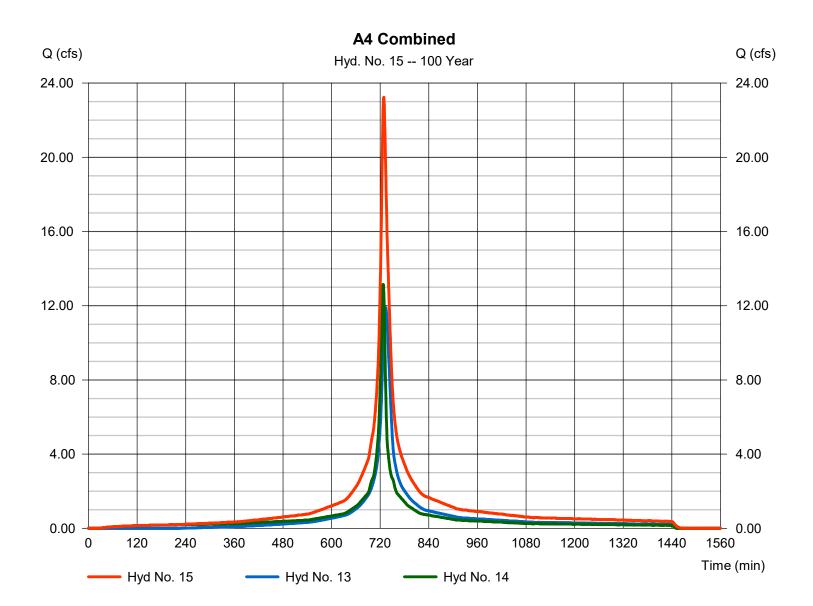


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 14

Watershed A-4 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 13.14 cfs
Storm frequency	= 100 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 51,387 cuft
Drainage area	= 1.300 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 7.00 min
Total precip.	= 11.41 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	R\data0\ 800265e1f20ctoP roject D	Dat a∖_438 cipline∖Site Civil∖Storr

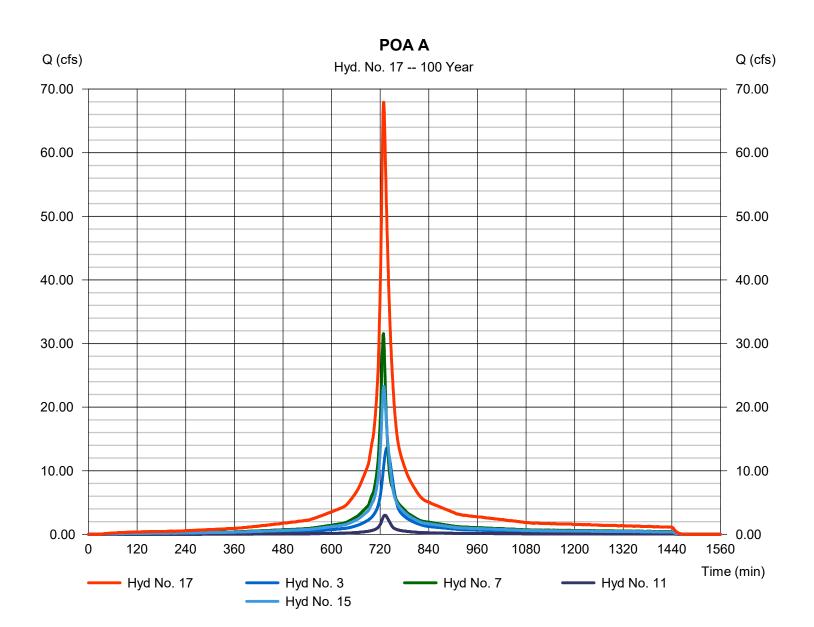


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 15

A4 Combined

Hydrograph type	= Combine	Peak discharge	= 23.24 cfs
Storm frequency	= 100 yrs	Time to peak	= 729 min
Time interval	= 1 min	Hyd. volume	= 105,858 cuft
Inflow hyds.	= 13, 14	Contrib. drain. area	= 3.010 ac

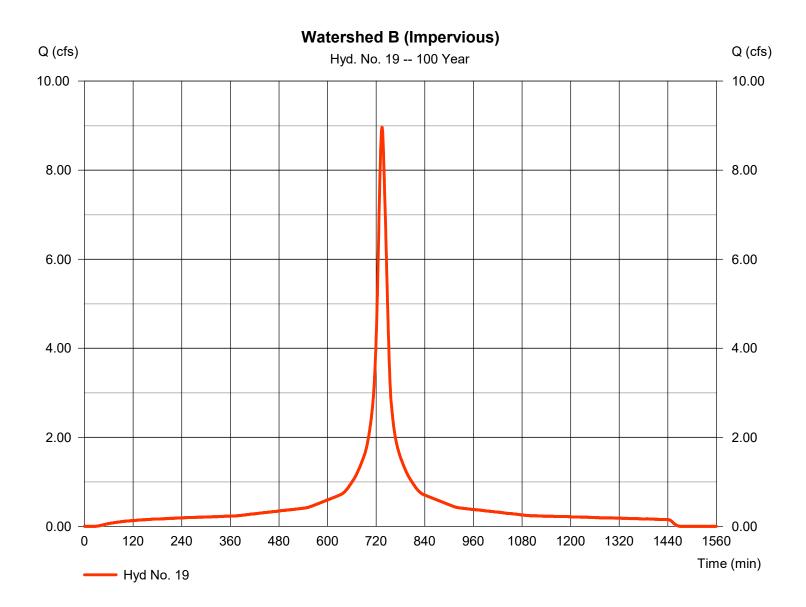


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 17

POA A

Hydrograph type	Combine100 yrs1 min	Peak discharge	= 67.92 cfs
Storm frequency		Time to peak	= 728 min
Time interval		Hyd. volume	= 316,397 cuft
Inflow hyds.	= 3, 7, 11, 15	Contrib. drain. area	= 0.000 ac

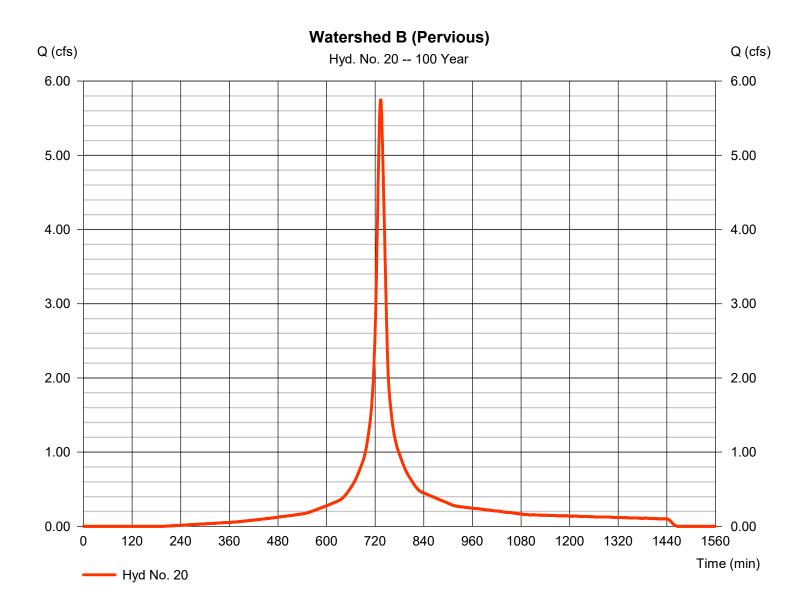


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 19

Watershed B (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 8.964 cfs
Storm frequency	= 100 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 48,245 cuft
Drainage area	= 1.190 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 11.41 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300365eff20ctoP rojectD)at a∖_43st cipline∖Site Civil∖Storr

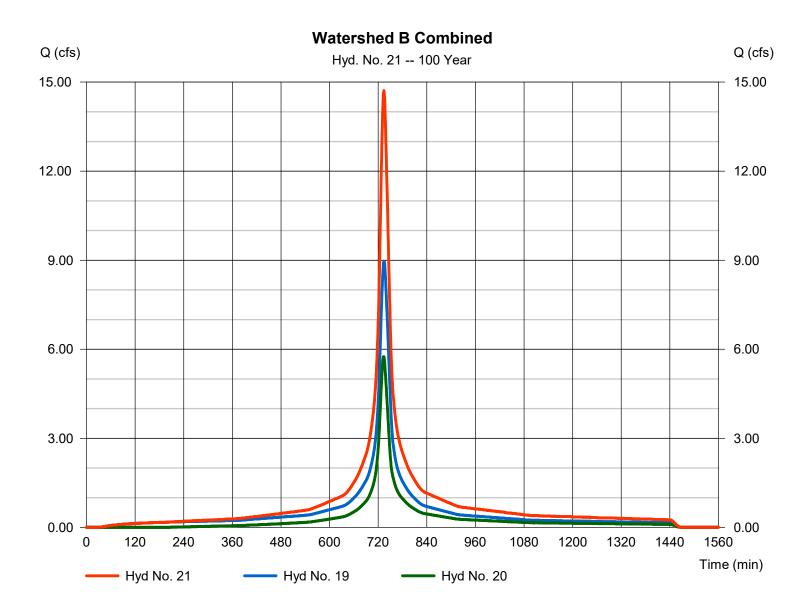


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 20

Watershed B (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 5.747 cfs
Storm frequency	= 100 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 26,574 cuft
Drainage area	= 0.810 ac	Curve number	= 82
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.00 min
Total precip.	= 11.41 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 130245£1120CtoP roject D	0at a∖_48e cipline∖Site Civil∖Storr



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 21

Watershed B Combined

Hydrograph type Storm frequency	= Combine = 100 yrs	Peak discharge Time to peak	= 14.71 cfs = 734 min
Time interval	= 1 min	Hyd. volume	= 74,820 cuft
Inflow hyds.	= 19, 20	Contrib. drain. area	= 2.000 ac

52

APPENDIX B

Post-Construction Hydrologic Analysis

LANGAN

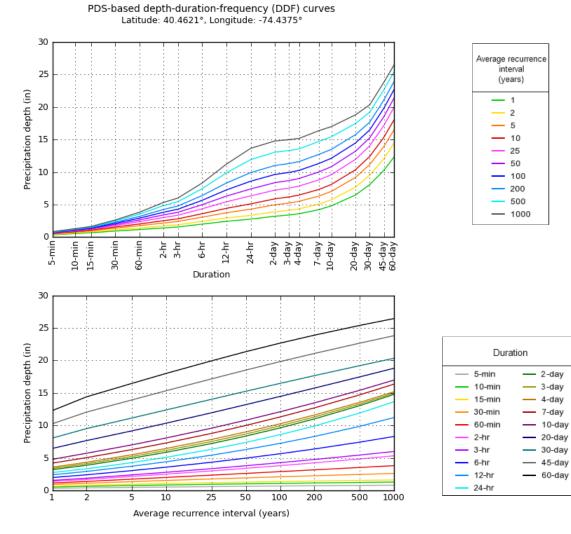
POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular


PD	S-based p	oint preci	pitation f	requency	estimates	with 90%	confiden	ce interva	als (in inc	hes) ¹
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.334 (0.303-0.369)	0.398 (0.360-0.440)	0.472 (0.426-0.521)	0.526 (0.474-0.580)	0.591 (0.531-0.652)	0.638 (0.569-0.702)	0.684 (0.608-0.754)	0.726 (0.642-0.802)	0.778 (0.681-0.861)	0.817 (0.710-0.907)
10-min	0.534 (0.483-0.590)	0.637 (0.576-0.703)	0.756 (0.682-0.835)	0.841 (0.758-0.928)	0.942 (0.846-1.04)	1.01 (0.906-1.12)	1.09 (0.966-1.20)	1.15 (1.02-1.27)	1.23 (1.08-1.36)	1.29 (1.12-1.43)
15-min	0.667 (0.604-0.738)	0.800 (0.724-0.884)	0.956 (0.863-1.06)	1.06 (0.959-1.17)	1.19 (1.07-1.32)	1.29 (1.15-1.42)	1.37 (1.22-1.52)	1.45 (1.28-1.60)	1.55 (1.36-1.72)	1.62 (1.40-1.79)
30-min	0.915 (0.828-1.01)	1.11 (1.00-1.22)	1.36 (1.23-1.50)	1.54 (1.39-1.70)	1.77 (1.59-1.95)	1.94 (1.73-2.13)	2.10 (1.87-2.32)	2.26 (2.00-2.50)	2.47 (2.16-2.73)	2.62 (2.27-2.90)
60-min	1.14 (1.03-1.26)	1.39 (1.25-1.53)	1.74 (1.57-1.92)	2.01 (1.81-2.22)	2.36 (2.11-2.60)	2.62 (2.34-2.89)	2.90 (2.58-3.20)	3.17 (2.80-3.50)	3.54 (3.10-3.92)	3.82 (3.32-4.24)
2-hr	1.40 (1.25-1.55)	1.70 (1.53-1.89)	2.16 (1.94-2.40)	2.51 (2.25-2.79)	3.00 (2.68-3.32)	3.41 (3.02-3.77)	3.82 (3.36-4.22)	4.25 (3.71-4.71)	4.85 (4.19-5.40)	5.33 (4.56-5.94)
3-hr	1.55 (1.39-1.73)	1.89 (1.70-2.11)	2.40 (2.16-2.67)	2.80 (2.51-3.11)	3.35 (2.99-3.72)	3.81 (3.37-4.22)	4.27 (3.76-4.74)	4.76 (4.16-5.29)	5.45 (4.69-6.06)	5.99 (5.11-6.70)
6-hr	1.98 (1.78-2.22)	2.41 (2.17-2.69)	3.06 (2.74-3.40)	3.58 (3.20-3.97)	4.34 (3.84-4.80)	4.97 (4.37-5.49)	5.65 (4.92-6.24)	6.38 (5.50-7.04)	7.43 (6.31-8.22)	8.31 (6.97-9.20)
12-hr	2.41 (2.16-2.72)	2.93 (2.61-3.29)	3.73 (3.32-4.19)	4.41 (3.91-4.94)	5.42 (4.77-6.05)	6.30 (5.50-7.02)	7.25 (6.26-8.07)	8.30 (7.08-9.26)	9.87 (8.26-11.0)	11.2 (9.24-12.5)
24-hr	2.75 (2.53-3.02)	3.34 (3.06-3.67)	4.28 (3.92-4.70)	5.10 (4.65-5.59)	6.33 (5.73-6.92)	7.39 (6.65-8.08)	8.58 (7.65-9.38)	9.91 (8.73-10.9)	11.9 (10.3-13.1)	13.6 (11.6-15.0)
2-day	3.20 (2.92-3.53)	3.87 (3.54-4.28)	4.96 (4.52-5.48)	5.87 (5.33-6.48)	7.21 (6.51-7.95)	8.37 (7.50-9.21)	9.62 (8.56-10.6)	11.0 (9.67-12.2)	13.0 (11.3-14.5)	14.8 (12.6-16.4)
3-day	3.39 (3.10-3.73)	4.10 (3.76-4.52)	5.23 (4.78-5.76)	6.17 (5.61-6.78)	7.53 (6.82-8.27)	8.69 (7.81-9.54)	9.94 (8.87-10.9)	11.3 (9.99-12.4)	13.3 (11.6-14.7)	15.0 (12.9-16.6)
4-day	3.58 (3.28-3.93)	4.34 (3.98-4.76)	5.50 (5.03-6.03)	6.46 (5.89-7.08)	7.85 (7.13-8.59)	9.01 (8.13-9.87)	10.3 (9.19-11.2)	11.6 (10.3-12.7)	13.6 (11.9-14.9)	15.2 (13.1-16.8)
7-day	4.21 (3.90-4.56)	5.05 (4.68-5.48)	6.29 (5.81-6.83)	7.31 (6.75-7.93)	8.78 (8.05-9.52)	10.0 (9.11-10.8)	11.3 (10.2-12.3)	12.7 (11.4-13.8)	14.7 (13.0-16.1)	16.4 (14.3-18.0)
10-day	4.79 (4.47-5.16)	5.73 (5.34-6.17)	7.02 (6.53-7.56)	8.08 (7.50-8.70)	9.58 (8.84-10.3)	10.8 (9.92-11.6)	12.1 (11.0-13.1)	13.5 (12.2-14.6)	15.4 (13.8-16.8)	17.0 (15.0-18.6)
20-day	6.47 (6.10-6.87)	7.68 (7.24-8.16)	9.17 (8.63-9.74)	10.4 (9.73-11.0)	12.0 (11.2-12.7)	13.2 (12.3-14.0)	14.5 (13.4-15.4)	15.8 (14.5-16.8)	17.5 (16.0-18.7)	18.8 (17.1-20.2)
30-day	8.06 (7.65-8.49)	9.52 (9.04-10.0)	11.1 (10.6-11.7)	12.4 (11.7-13.0)	14.0 (13.2-14.8)	15.3 (14.4-16.1)	16.5 (15.5-17.4)	17.7 (16.5-18.7)	19.2 (17.8-20.4)	20.3 (18.8-21.7)
45-day	10.3 (9.77-10.8)	12.1 (11.5-12.6)	13.9 (13.3-14.6)	15.3 (14.6-16.1)	17.2 (16.3-18.0)	18.5 (17.5-19.4)	19.8 (18.7-20.8)	21.1 (19.8-22.2)	22.7 (21.2-23.9)	23.8 (22.2-25.2)
60-day	12.3 (11.7-12.8)	14.4 (13.8-15.1)	16.5 (15.8-17.2)	18.0 (17.2-18.8)	19.9 (19.0-20.8)	21.4 (20.3-22.3)	22.7 (21.5-23.7)	23.9 (22.6-25.0)	25.4 (23.9-26.7)	26.4 (24.8-27.9)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top


NOAA Atlas 14, Volume 2, Version 3

Created (GMT): Mon Feb 13 17:40:13 2023

Back to Top

Maps & aerials

Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

PROPOSED WATERSHED CALCULATIONS

King Arthur Ct Warehouse

North Brunswick, NJ 100851001

Watershed	Watershed Description	Total Area (AC)	Landscaped Area (AC)	Woods Area (AC)	Gravel Area (AC)	Impervious Area (AC)	Curve Number, CN (Weighted)
WS A1	North Walled Basin	2.13	0.79	0.00	0.02	1.32	91
WS A2	South Walled Basin	2.38	0.41	0.00	0.05	1.92	95
WS A3	Underground Basin (North)	2.20	0.00	0.00	0.00	2.20	98
WS A4	Underground Basin (Sotuh)	1.57	0.00	0.00	0.00	1.57	98
WS A5	Filterra directly to outfall	1.01	0.08	0.00	0.00	0.92	97
WS A6	Undetained to Creek	0.81	0.81	0.00	0.00	0.00	80
WS B	Drainage area to Railroad	0.88	0.70	0.02	0.14	0.03	82
Total		10.97	2.79	0.02	0.21	7.96	86

CN-Values	
Open Space Area	80
Woods Area	77
Gravel Area	91
Impervious Area	98

*CN Values from Table 2-2, TR-55 Manual - Urban Hydrology for Small Watersheds

Proj	ect: Project King Arthur	By:	AM	Date:	4/26/2023
Loca	tion: North Brunswick	Checked By:	PM	Date Checked:	4/26/2023
Circ	e One: Present Developed		Proposed	d Watershed A1- Imperviou	ıs
Circ	e One: T_c T_t through subar	rea			
	Include a map, schematic, or description of flow	v segments.			
Shee	et Flow (Applicable to T _c Only)	Segment ID	1		
1.	Surface Description (NEH table 15-1)		Smooth Surface	es	
2.	Manning's Roughness Coeff., n (NEH table 15-1)		0.011		
3.	Flow Length, L (Total L < 100 ft)	ft	100		
4.	Two-year 24-hr rainfall, P_2	in	3.36		
5.	Land Slope, s	ft/ft	0.028		
6.	McCuen-Spiess Limit, L (max. 100ft) L = (100 s	^{0.5})/n ft	100		
7.	Compute T_t $T_t = \frac{0.007 (nL)^{0.8}}{P_0^{0.5} s^{0.4}}$	hr	0.017	+ +	
	$P_2^{0.5}s^{0.4}$				
				Sheet Flow Sub-Total	0.017 hours
Shal	low Concentrated Flow	Segment ID	2		
<u>ona</u>		Segment 15	Pavement		
8.	Surface Description				
9.	Flow Length, L	ft	34	_	
10.	Watercourse Slope, s	ft/ft	0.033		
11.	Average Velocity, V (NEH table 15-3)	ft/s	3.67		
12.	Compute T_t $T_t = \frac{L}{3600 V}$	hr	0.003	+ +	
	3600 V				
			Shallo	ow Conc. Flow Sub-Total	0.003 hours
Cha		Cogmont ID	3		
	Inel Flow	Segment ID		-┥┟┥┟	
13.	Flow Length, L	ft ft/c	2.00	-┥┟┥┟	
14. 15.	Average Velocity, V Compute T _t _ L	ft/s hr	0.110	+ +	
13.	Compute T_t $T_t = \frac{L}{3600 V}$	[][0.110		
	5000 V			Channel Flow Sub-Total	0.110 hours
Wat	ershed or subarea T _c or T _t			Total Tc (hours) =	0.130 hours
	Sub-Total T _t from prior steps)			Total Tc (minutes) =	8 minutes

Proj	ect: Project King Arthur	By:	AM	Date:	4/26/2023
Loca	tion: North Brunswick	Checked By:	PM	Date Checked:	4/26/2023
Circ	e One: Present Developed		Proposed	Watershed A1 - Pervious	\$
Circ	e One: T_c T_t through subar	rea			
	Include a map, schematic, or description of flow	w segments.			
<u>She</u>	et Flow (Applicable to T _c Only)	Segment ID	1] [] [
1.	Surface Description (NEH table 15-1)		Dense Grasses		
2.	Manning's Roughness Coeff., n (NEH table 15-1)		0.24		
3.	Flow Length, L (Total L < 100 ft)	ft	57		
4.	Two-year 24-hr rainfall, P_2	in	3.36		
5.	Land Slope, s	ft/ft	0.020		
6.	McCuen-Spiess Limit, L (max. 100ft) L = (100 s	^{0.5})/n ft	58		
7.	Compute T _t $T_t = \frac{0.007 (nL)^{0.8}}{P_0^{0.5} s^{0.4}}$	hr	0.149	+ +	
	$P_1 = \frac{P_2^{0.5} s^{0.4}}{P_2^{0.5} s^{0.4}}$				
				Sheet Flow Sub-Total	0.149 hours
Shal	low Concentrated Flow	Segment ID	2	3	
		008	Grassed	Pavement	
8. 9.	Surface Description Flow Length, L	ft	Waterways 68	47	
9. 10.	Watercourse Slope, s	ft/ft	0.049	0.030	
10.	Average Velocity, V (NEH table 15-3)	ft/s	3.56	3.55	
11. 12.		hr	0.005	+ 0.004 +	
	Compute T_t $T_t = \frac{L}{3600 V}$	[
			Shallov	w Conc. Flow Sub-Total	0.009 hours
<u>Ch</u> a	nnel Flow	Segment ID	4] [] [
13.	Flow Length, L	ft	793	1 -	
14.	Average Velocity, V	ft/s	2.00	1 -	
15.	Compute T _t	hr	0.110	+ +	
	Compute T_t $T_t = \frac{L}{3600 V}$				
			(Channel Flow Sub-Total	0.110 hours
Wat	ershed or subarea T _c or T _t			Total Tc (hours) =	0.268 hours
(Add	l Sub-Total T _t from prior steps)			Total Tc (minutes) =	16 minutes

Proj	ect: Project King Arthur	By:	AM	Date:	4/26/2023
Loca	tion: North Brunswick	Checked By:	PM	Date Checked:	4/26/2023
Circl	e One: Present Developed		Proposed	Watershed A2 - Imperviou	ls
Circl	e One: (T_c) T_t through subar				
	Include a map, schematic, or description of flow	w segments.			
<u>Shee</u>	:<u>t Flow</u> (Applicable to T _c Only)	Segment ID	1		
1.	Surface Description (NEH table 15-1)		Smooth Surface	es	
2.	Manning's Roughness Coeff., n (NEH table 15-1)		0.011		
3.	Flow Length, L (Total L < 100 ft)	ft	100		
4.	Two-year 24-hr rainfall, P_2	in	3.36		
5.	Land Slope, s	ft/ft	0.014		
6.	McCuen-Spiess Limit, L (max. 100ft) L = (100 s	^{0.5})/n ft	100		
7.	Compute T_t $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} S^{0.4}}$	hr	0.023	+ +	
	$P_1 = \frac{P_2^{0.5} s^{0.4}}{P_2^{0.5} s^{0.4}}$				
				Sheet Flow Sub-Total	0.023 hours
			-	-,,	
<u>Shal</u>	ow Concentrated Flow	Segment ID	2	_	
8.	Surface Description		Pavement		
9.	Flow Length, L	ft	84		
10.	Watercourse Slope, s	ft/ft	0.016		
11.	Average Velocity, V (NEH table 15-3)	ft/s	2.58		
12.	Compute T_t $T_t = \frac{L}{3600 V}$	hr	0.009	+ +	
	3600 V				
			Shallo	w Conc. Flow Sub-Total	0.009 hours
Chai	inel Flow	Segment ID	3		
13.	Flow Length, L	ft	748	┥╞────┤┝	
14.	Average Velocity, V	ft/s	2.00	┥┟────┤┟	
15.		hr	0.104	+ +	
	Compute T_t $T_t = \frac{L}{3600 V}$		L		
				Channel Flow Sub-Total	0.104 hours
Wat	ershed or subarea T _c or T _t			Total Tc (hours) =	0.136 hours
(Add	Sub-Total T _t from prior steps)			Total Tc (minutes) =	8 minutes

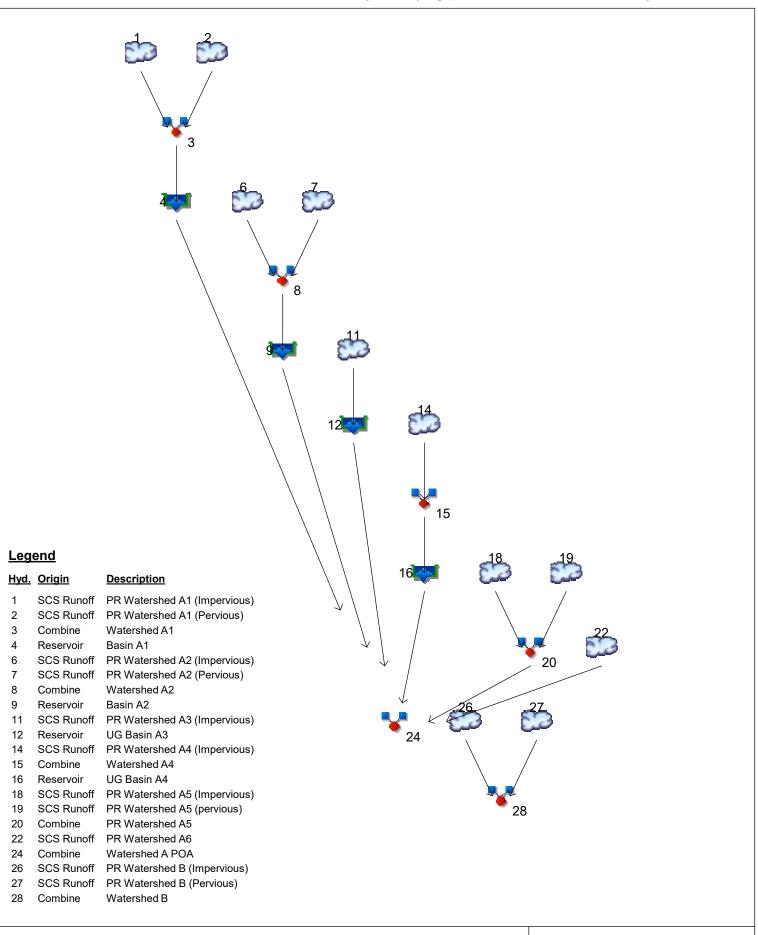
Location: North Brunswick Checked By: PM Date Checked: $4/25/2023$ Circle One: T_t through subarea Proposed Watershed A2 - Pervious Include a map, schematic, or description of flow segments. Sheet Flow (Applicable to T, Only) Segment ID 1 2 Include a map, schematic, or description of flow segments. 1. Surface Description (NEH table 15-1) Dense Grasses Smooth Surfaces Include a map, schematic, or description ft, in table 15-1) 2. Manning's Roughness Coeff., n (NEH table 15-1) 1 Dense Grasses Smooth Surfaces 3. Flow Length, L (Total < 100 ft) ft 36 36 Include a map, schematic, or description 5. Land Slope, s ft/ft 0.021 0.021 Include a map, and	Proj	ect: Project King Arthur	By:	AM	Date:	4/26/2023
Circle One: T _c T _t through subarea Include a map, schematic, or description of flow segments. Sheet Flow (Applicable to T _c Only) Segment ID 1 1. Surface Description (NEH table 15-1) Show Length, L (Total L < 100 ft)	Loca	tion: North Brunswick	Checked By:	PM	Date Checked:	4/26/2023
Include a map, schematic, or description of flow segments. Sheet Flow (Applicable to T _c Only) Segment ID Surface Description (NEH table 15-1) Surface Description (NEH table 15-1) Surface Length, L (Total L < 100 ft) L = (100 s ^{0.5})/n ft Compute T _t $T_t = \frac{0.007 (nl)^{0.4}}{P_2^{0.5} s^{0.4}}$ Segment ID Segment ID Segment ID Segment ID Segment ID Flow Length, L T _t = $\frac{L}{3600 V}$ Segment ID Segment ID Segment ID Segment ID Segment ID Segment ID Segment ID Segment ID Shallow Conc. Flow Sub-Total 0.012 hours Shallow Conc. Flow Sub-Total 0.014 hours Channel Flow Sub-Total 0.014 hours Shallow Conc. Flow Sub-Total 0.14 hours Shallow Conc. Flow Sub-Total 0.14 hou	Circ	e One: Present Developed		Proposed	Watershed A2 - Perviou	S
Sheet Flow (Applicable to T_c Only) Segment ID 1 1. Surface Description (NEH table 15-1) 1. Surface Description (NEH table 15-1) 1. Prove a 24-hr rainfall, P_2 Init 3.36 0.24 3.36 0.24 3.36 0.24 3.36 0.24 3.36 0.24 3.36 0.24 3.36 0.24 3.36 0.24 3.36 0.24 3.36 0.021 1.00 tr To origin 10 To an origin 10 Shallow Concentrated Flow Segment ID A To an origin 10 Shallow Concentrated Flow Segment ID A <td>Circ</td> <td>e One: T_c T_t through suba</td> <td>rea</td> <td></td> <td></td> <td></td>	Circ	e One: T_c T_t through suba	rea			
1. Surface Description (NEH table 15-1) 2. Manning's Roughness Coeff., n (NEH table 15-1) 3. Flow Length, L (Total L < 100 ft)		Include a map, schematic, or description of flow	w segments.			
1. Surface Description (NEH table 15-1) 2. Manning's Roughness Coeff., n (NEH table 15-1) 3. Flow Length, L (Total L < 100 ft)					,, r	
1. Surface Description (refer table 15-1) 2. Manning's Roughness Coeff., n (NEH table 15-1) 3. Flow Length, L (total L < 100 ft)	She	et Flow (Applicable to T _c Only)	Segment ID	1	2	
3. Flow Length, L (Total L < 100 ft) 4. Two-year 24-hr rainfall, P ₂ 5. Land Slope, s 6. McCuen-Spiess Limit, L (max. 100ft) L = $(100 s^{0.5})/n$ ft 6. McCuen-Spiess Limit, L (max. 100ft) L = $(100 s^{0.5})/n$ ft 6. McCuen-Spiess Limit, L (max. 100ft) L = $(100 s^{0.5})/n$ ft 6. 0.021 6. 0.021 6. 0.021 6. 0.002 7. Compute T _t 7. $T_t = \frac{0.007 (hl)^{0.8}}{P_2^{0.5} s^{0.4}}$ Sheet Flow Sub-Total 0.109 hours Shallow Concentrated Flow 8. Surface Description 9. Flow Length, L 10. Watercourse Slope, s 11. Average Velocity, V (NEH table 15-3) 12. Compute T _t T _t = $\frac{L}{3600 V}$ Segment ID 3. Flow Length, L 13. Flow Length, L 14. Average Velocity, V (NEH table 15-3) 15. Compute T _t T _t = $\frac{L}{3600 V}$ Segment ID 4. $T_t = \frac{L}{3600 V}$ Channel Flow Sub-Total 0.104 hours Watershed or subarea T _c or T _t Total Tc (hours) = 0.226 hours	1.	Surface Description (NEH table 15-1)		Dense Grasses	Smooth Surfaces	
1. Two-year 24-hr rainfall, P2 in 3.36 3.36 5. Land Slope, s ft/ft 0.021 0.021 6. McCuen-Spiess Limit, L (max. 100ft) L = (100 s ^{0.5})/n ft 60 + 7. Compute T _t T _t = $\frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$ hr 0.101 + 0.008 Sheet Flow Sub-Total 0.109 hours Shallow Concentrated Flow Segment ID 8. Surface Description Pavement 9. Flow Length, L ft 103 10. Watercourse Slope, s ft/ft 0.013 11. Average Velocity, V (NEH table 15-3) ft/s 2.29 12. Compute T _t T _t = $\frac{L}{3600 V}$ hr 0.012 Shallow Conc. Flow Sub-Total 0.012 hours Channel Flow Segment ID 4 13. Flow Length, L ft/s 2.00 + + Total Total 0.104 ho	2.	Manning's Roughness Coeff., n (NEH table 15-1)		0.24	0.011	
5. Land Slope, s ft/ft 0.021 0.021 6. McCuen-Spiess Limit, L (max. 100ft) L = (100 s ^{0.5})/n ft 60 7. Compute T _t T _t = $\frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$ hr 0.101 + 8. Surface Description Sheet Flow Sub-Total 0.109 hours 9. Flow Length, L ft 103	3.	Flow Length, L (Total L < 100 ft)	ft	36	36	
6. McCuen-Spiess Limit, L (max. 100ft) L = (100 s ^{0.5})/n ft 60 + 100 - 7. Compute T _t T _t = $\frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$ hr 60 + 0.008 + - Sheet Flow Sub-Total 0.101 - 0.101 + 0.008 + - Sheet Flow Sub-Total 0.109 hours Shallow Concentrated Flow Segment ID 3 8. Surface Description + 103 - <td< td=""><td>4.</td><td>Two-year 24-hr rainfall, P_2</td><td>in</td><td>3.36</td><td>3.36</td><td></td></td<>	4.	Two-year 24-hr rainfall, P_2	in	3.36	3.36	
7. Compute T_t $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} S^{0.4}}$ Sheat Flow Sub-Total 0.109 hours Shallow Concentrated Flow 8. Surface Description 9. Flow Length, L 10. Watercourse Slope, s 11. Average Velocity, V (NEH table 15-3) 12. Compute T_t $T_t = \frac{L}{3600 V}$ Channel Flow 13. Flow Length, L 14. Average Velocity, V 15. Compute T_t $T_t = \frac{L}{3600 V}$ Segment ID 4 13. Flow Length, L 14. Average Velocity, V 15. Compute T_t $T_t = \frac{L}{3600 V}$ Segment ID 4 $T_t = \frac{L}{3600 V}$ Segment ID 4 $T_t = \frac{L}{3600 V}$ Segment ID 4 $T_t = \frac{L}{3600 V}$ Channel Flow Sub-Total 0.104 hours Velocity, V 15. Compute T_t $T_t = \frac{L}{3600 V}$ Channel Flow Sub-Total 0.104 hours Velocity, V Channel Flow Sub-Total 0.104 hours Channel Flow Sub-Total 0.104 hours	5.	Land Slope, s	ft/ft	0.021	0.021	
Sheet Flow Sub-Total 0.109 hours 8. Surface Description 9. Flow Length, L ft 10.013 Te = L Materia Colspan="2">Onlog Segment ID 4 Auge Colspan="2">Auge Colspan="2">Channel Flow Te = L Total Flow Onlog Auge Colspan="2">Onlog Auge Colspan="2">Onlog Auge Colspan="2">Channel Flow Channel Flow Segment ID 4 Te = Channel Flow Segment ID 4 13. Flow Length, L Total Total 0.104 hours Total Total Total Total Total Total Total 0.104 hours	6.	McCuen-Spiess Limit, L (max. 100ft) L = (100 s	s ^{0.5})∕n ft	60	100	
Sheet Flow Sub-Total 0.109 hours 8. Surface Description 9. Flow Length, L ft 10.013 Te = L Materia Colspan="2">Onlog Segment ID 4 Auge Colspan="2">Auge Colspan="2">Channel Flow Te = L Total Flow Onlog Auge Colspan="2">Onlog Auge Colspan="2">Onlog Auge Colspan="2">Channel Flow Channel Flow Segment ID 4 Te = Channel Flow Segment ID 4 13. Flow Length, L Total Total 0.104 hours Total Total Total Total Total Total Total 0.104 hours	7.	Compute T_t T 0.007 (nL) ^{0.8}	hr	0.101	+ 0.008 +	
Shallow Concentrated Flow Segment ID 3 8. Surface Description Pavement Image: Segment ID Image: Segment ID </td <td></td> <td>$P_2^{0.5}s^{0.4}$</td> <td></td> <td></td> <td></td> <td></td>		$P_2^{0.5}s^{0.4}$				
8. Surface Description 9. Flow Length, L 10. Watercourse Slope, s 11. Average Velocity, V (NEH table 15-3) 12. Compute T _t $T_t = \frac{L}{3600 V}$ Channel Flow 13. Flow Length, L 14. Average Velocity, V 15. Compute T _t $T_t = \frac{L}{3600 V}$ Matershed or subarea T _c or T _t $T_t = \frac{L}{100 V}$ Matershed or subarea T _c or T _t $T_t = \frac{L}{100 V}$ Pavement ft 103 103 103 103 103 103 103 103					Sheet Flow Sub-Total	0.109 hours
8. Surface Description 9. Flow Length, L 10. Watercourse Slope, s 11. Average Velocity, V (NEH table 15-3) 12. Compute T _t $T_t = \frac{L}{3600 V}$ Channel Flow 13. Flow Length, L 14. Average Velocity, V 15. Compute T _t $T_t = \frac{L}{3600 V}$ Matershed or subarea T _c or T _t $T_t = \frac{L}{100 V}$ Matershed or subarea T _c or T _t $T_t = \frac{L}{100 V}$ Pavement ft 103 103 103 103 103 103 103 103					, r	
8. Surface Description 9. Flow Length, L 10. Watercourse Slope, s 11. Average Velocity, V (NEH table 15-3) 12. Compute T _t $T_t = \frac{L}{3600 V}$ Channel Flow 13. Flow Length, L 14. Average Velocity, V 15. Compute T _t $T_t = \frac{L}{3600 V}$ $T_t = \frac{L}{3600 V}$ Segment ID ft $748ft/s$ $2.00ft/s$ 2.0	<u>Sha</u>	low Concentrated Flow	Segment ID	3		
10. Watercourse Slope, s ft/ft 0.013	8.	Surface Description		Pavement		
11. Average Velocity, V (NEH table 15-3) ft/s 2.29 12. Compute T_t $T_t = \frac{L}{3600 V}$ hr 0.012 Shallow Conc. Flow Sub-Total 0.012 hours Channel Flow Segment ID 4 13. Flow Length, L ft 748 14. Average Velocity, V ft/s 2.00 15. Compute T_t $T_t = \frac{L}{3600 V}$ hr Channel Flow Sub-Total Watershed or subarea T_c or T_t	9.	Flow Length, L	ft	103		
12. Compute T_t $T_t = \frac{L}{3600 V}$ hr $0.012 + \frac{L}{100000000000000000000000000000000000$	10.	Watercourse Slope, s	ft/ft	0.013		
$T_t = $ 3600 V Shallow Conc. Flow Sub-Total 0.012 hours Shallow Conc. Flow Sub-Total 0.012 hours 13. Flow Length, L ft 14. Average Velocity, V ft/s 15. Compute T_t $T_t = $ L hr 0.104 + V Channel Flow Sub-Total 0.104 hours 0.104 hours Vatershed or subarea T_c or T_t Total Tc (hours) =	11.	Average Velocity, V (NEH table 15-3)	ft/s	2.29		
Show V Shallow Conc. Flow Sub-Total 0.012 hours Channel Flow Segment ID 4	12.	Compute T _t	hr	0.012	+ +	
Channel Flow Segment ID 4		3600 V				
13. Flow Length, L ft 748 14. Average Velocity, V ft/s 2.00 15. Compute T_t $T_t = \frac{L}{3600 V}$ hr 0.104 Channel Flow Sub-Total 0.104 hours Watershed or subarea T_c or T_t				Shallow	v Conc. Flow Sub-Total	0.012 hours
13. Flow Length, L ft 748						
13. Flow Length, L ft 748	Cha	nnel Flow	Segment ID	4] [] [
14. Average Velocity, V ft/s 2.00 15. Compute T_t $T_t = \frac{L}{3600 V}$ Channel Flow Sub-Total 0.104 hr Channel Flow Sub-Total 0.104 hours Total Tc (hours) = 0.226 hours			-			
15. Compute T_t $T_t = \frac{L}{3600 V}$ hr 0.104 + $+$ + + $+$ + + + $+$ + + + $+$ + $+$ + $+$ + $+$ + + + $+$ + $+$ + $+$ + + + $+$ + + + + $+$ + + + + $+$ + + + + $+$ + + + $+$ + + + + + + +	-	-	-			
Channel Flow Sub-Total 0.104 hours Watershed or subarea T _c or T _t Total Tc (hours) = 0.226 hours			-		+ +	
Channel Flow Sub-Total 0.104 hours Watershed or subarea T _c or T _t Total Tc (hours) = 0.226 hours	-	$T_t =$		~		
				С	hannel Flow Sub-Total	0.104 hours
(Add Sub-Total T _t from prior steps) Total Tc (minutes) = 14 minutes	Wat	ershed or subarea T _c or T _t			Total Tc (hours) =	0.226 hours
	(Add	l Sub-Total T _t from prior steps)			Total Tc (minutes) =	14 minutes

Proj	ect: Project King Arthur	By:	AM	Date:	4/26/2023
Loca	tion: North Brunswick	Checked By:	PM	Date Checked:	4/26/2023
Circl	e One: Present Developed		Proposed	Watershed A3 - Impervio	JS
Circl	e One: (T_c) T_t through suba				
	Include a map, schematic, or description of flow	w segments.			
Shee	et Flow (Applicable to T _c Only)	Segment ID	1		
1.	Surface Description (NEH table 15-1)		Smooth Surface	es	
2.	Manning's Roughness Coeff., n (NEH table 15-1)		0.011		
3.	Flow Length, L (Total L < 100 ft)	ft	100		
4.	Two-year 24-hr rainfall, P ₂	in	3.36		
5.	Land Slope, s	ft/ft	0.010		
6.	McCuen-Spiess Limit, L (max. 100ft) L = (100 s	s ^{0.5})/n ft	100		
7.	Compute T_t $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} s^{0.4}}$	hr	0.026	+ +	
	$P_2^{0.5} s^{0.4}$				
				Sheet Flow Sub-Total	0.026 hours
				-,, _	
Shai	low Concentrated Flow	Segment ID	2	┥┝───┤┝	
8.	Surface Description		Pavement		
9.	Flow Length, L	ft	44		
10.	Watercourse Slope, s	ft/ft	0.010		
11.	Average Velocity, V (NEH table 15-3)	ft/s	2.08		
12.	Compute T_t $T_t = \frac{L}{3600 V}$	hr	0.006	+ +	
	3600 V				
			Shallo	w Conc. Flow Sub-Total	0.006 hours
Cha	nnel Flow	Segment ID	3		
<u>13.</u>	Flow Length, L	ft	737	┥┝───┤┟	
13. 14.	Average Velocity, V	ft/s	2.00	┥┝───┤┝	
15.		hr	0.102	+ +	
-	Compute T_t $T_t = \frac{L}{3600 V}$				
				Channel Flow Sub-Total	0.102 hours
Wat	ershed or subarea T _c or T _t			Total Tc (hours) =	0.134 hours
	I Sub-Total T _t from prior steps)			Total Tc (minutes) =	8 minutes

Proj	ect: Project King Arthur	By:	AM	Date:	4/26/2023
Loca	tion: North Brunswick	Checked By:	PM	Date Checked:	4/26/2023
Circ	e One: Present Developed		Proposed	Watershed A4 - Impervio	us
Circ	e One: T_c T_t through suba				
	Include a map, schematic, or description of flow	w segments.			
She	et Flow (Applicable to T _c Only)	Segment ID	1		
1.	Surface Description (NEH table 15-1)		Smooth Surface	s	
2.	Manning's Roughness Coeff., n (NEH table 15-1)		0.011		
3.	Flow Length, L (Total L < 100 ft)	ft	100		
4.	Two-year 24-hr rainfall, P ₂	in	3.36		
5.	Land Slope, s	ft/ft	0.010		
6.	McCuen-Spiess Limit, L (max. 100ft) L = (100 s	s ^{0.5})/n ft	100		
7.	Compute T_t $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} S^{0.4}}$	hr	0.026	+ +	
	$P_t = \frac{P_2^{0.5} s^{0.4}}{P_2^{0.5} s^{0.4}}$				
				Sheet Flow Sub-Total	0.026 hours
			-		
Shal	low Concentrated Flow	Segment ID	2	┥┝───┤┝	
8.	Surface Description		Pavement		
9.	Flow Length, L	ft	26		
10.	Watercourse Slope, s	ft/ft	0.010		
11.	Average Velocity, V (NEH table 15-3)	ft/s	2.07		
12.	Compute T_t $T_t = \frac{L}{3600 V}$	hr	0.003	+ +	
	3600 V				
			Shallo	w Conc. Flow Sub-Total	0.003 hours
Cha	nnel Flow	Segment ID	3] [] [
13.	Flow Length, L	ft	722	┥┟────┤┟	
14.	Average Velocity, V	ft/s	2.00	┥┟────┤┟	
15.		hr	0.100	+ +	
	Compute T_t $T_t = \frac{L}{3600 V}$		L		
				Channel Flow Sub-Total	0.100 hours
Wat	ershed or subarea T _c or T _t			Total Tc (hours) =	0.129 hours
	Sub-Total T _t from prior steps)				

Proj	ect: Project King Arthur	By:	AM	Date:	4/26/2023
Loca	tion: North Brunswick	Checked By:	PM	Date Checked:	4/26/2023
Circl	e One: Present Developed		Proposed	Watershed A5 - Impervio	us
Circl	e One: (T_c) T_t through subar				
	Include a map, schematic, or description of flow	w segments.			
Shee	:<u>t Flow</u> (Applicable to T _c Only)	Segment ID	1		
1.	Surface Description (NEH table 15-1)		Smooth Surface	es	
2.	Manning's Roughness Coeff., n (NEH table 15-1)		0.011		
3.	Flow Length, L (Total L < 100 ft)	ft	100		
4.	Two-year 24-hr rainfall, P_2	in	3.36		
5.	Land Slope, s	ft/ft	0.009		
6.	McCuen-Spiess Limit, L (max. 100ft) L = (100 s	^{0.5})/n ft	100		
7.	Compute T_t $T_t = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} S^{0.4}}$	hr	0.028	+ +	
	$P_2^{0.5}s^{0.4}$				
				Sheet Flow Sub-Total	0.028 hours
		C 115			
<u>Shai</u>	low Concentrated Flow	Segment ID	2	┥┝───┤├	
8.	Surface Description		Pavement		
9.	Flow Length, L	ft	55		
10.	Watercourse Slope, s	ft/ft	0.009		
11.	Average Velocity, V (NEH table 15-3)	ft/s	1.90		
12.	Compute T_t $T_t = \frac{L}{3600 V}$	hr	0.008	+ +	
	3600 V				
			Shallo	w Conc. Flow Sub-Total	0.008 hours
<u>Cha</u> ı	nel Flow	Segment ID	3		
13.	Flow Length, L	ft	943		
14.	Average Velocity, V	ft/s	2.00		
15.		hr	0.131	+ +	
	Compute T_t $T_t = \frac{L}{3600 V}$				
				Channel Flow Sub-Total	0.131 hours
	ershed or subarea T _c or T _t			Total Tc (hours) =	0.167 hours
(Add	Sub-Total T _t from prior steps)			Total Tc (minutes) =	10 minutes

Project: Project King Arthur	By:	AM	Date:	4/26/2023
Location: North Brunswick	Checked By:	PM	Date Checked:	4/26/2023
Circle One: Present Developed		Proposed	Watershed A5 - Perviou	s
Circle One: T _c T _t through suba	irea			
Include a map, schematic, or description of flo	w segments.			
				,
<u>Sheet Flow</u> (Applicable to T _c Only)	Segment ID	1	2	
1. Surface Description (NEH table 15-1)		Dense Grasses	Smooth Surfaces	
2. Manning's Roughness Coeff., n (NEH table 15-1)		0.24	0.011	
3. Flow Length, L (Total L < 100 ft)	ft	29	3	
4. Two-year 24-hr rainfall, P ₂	in	3.36	3.36	
5. Land Slope, s	ft/ft	0.207	0.070	
6. McCuen-Spiess Limit, L (max. 100ft) L = (100	s ^{0.5})/n ft	100	100	
7. Compute T_t $T_t = \frac{0.007 (nL)^{0.8}}{P_0^{0.5} s^{0.4}}$	hr	0.034	+ 0.001 +	
$P_2^{0.5}s^{0.4}$				
			Sheet Flow Sub-Total	0.035 hours
Channel Flow	Segment ID	3		
13. Flow Length, L	ft	943		
14. Average Velocity, V	ft/s	2.00		
15. Compute T _t L	hr	0.131	+ +	
15. Compute T_t $T_t = \frac{L}{3600 V}$			L	
		C	hannel Flow Sub-Total	0.131 hours
Watershed or subarea T _c or T _t			Total Tc (hours) =	0.166 hours
(Add Sub-Total T _t from prior steps)			Total Tc (minutes) =	10 minutes


Pro	ject: Project King Arthur	By:	AM	Date:	4/26/2023
Loc	ation: North Brunswick	Checked By:	PM	Date Checked:	4/26/2023
Circ	le One: Present Developed		Proposed	Watershed A6 - Pervious	s
Circ	le One: T _c T _t through suba	rea			
	Include a map, schematic, or description of flow	w segments.			
				-,,	
<u>She</u>	et Flow (Applicable to T _c Only)	Segment ID	1	┥┝───┤┝	
1.	Surface Description (NEH table 15-1)		Dense Grasses		
2.	Manning's Roughness Coeff., n (NEH table 15-1)		0.24		
3.	Flow Length, L (Total L < 100 ft)	ft	87		
4.	Two-year 24-hr rainfall, P ₂	in	3.36		
5.	Land Slope, s	ft/ft	0.045		
6.	McCuen-Spiess Limit, L (max. 100ft) L = (100 s	s ^{0.5})/n ft	88		
7.	Compute T_t $T_t = \frac{0.007 (nL)^{0.8}}{P_0^{0.5} s^{0.4}}$	hr	0.151	+ +	
	$P_2^{0.5} s^{0.4}$				
				Sheet Flow Sub-Total	0.151 hours
<u>Cha</u>	llow Concentrated Flow	Segment ID	2	3	
<u>311a</u>	Ilow Concentrated Flow	Segment iD	Grassed		
8.	Surface Description		Waterways	Woodlands	
9.	Flow Length, L	ft	40	230	
10.	Watercourse Slope, s	ft/ft	0.060	0.143	
11.	Average Velocity, V (NEH table 15-3)	ft/s	3.97	1.90	
12.	Compute $T_t = \frac{L}{3600 V}$	hr	0.003	+ 0.034 +	
	3600 V				
			Shallo	w Conc. Flow Sub-Total	0.036 hours
Cha	nnel Flow	Segment ID	4		
13.	Flow Length, L	ft	930	┥┟────┤┟	
14.		ft/s	2.00	┥┟────┤┟	
15.		, hr	0.129	+ +	
	Compute T_t $T_t = \frac{L}{3600 V}$				
			(Channel Flow Sub-Total	0.129 hours
Wa	tershed or subarea T _c or T _t			Total Tc (hours) =	0.316 hours
(Ad	d Sub-Total T _t from prior steps)			Total Tc (minutes) =	19 minutes

FIU	ect: Project King Arthur	By:	AM	Date:	4/26/2023
Loca	ation: North Brunswick, NJ	Checked By:	PM	Date Checked:	4/26/2023
Circ	le One: Present Developed		Proposed W	Vatershed B - Impervior	us
Circ	le One: T _c T _t through suba	area			
	Include a map, schematic, or description of flo	ow segments.			
She	et Flow (Applicable to T _c Only)	Segment ID	1	2	
1.	Surface Description (NEH table 15-1)		Smooth Surfaces	Dense Grasses	
2.	Manning's Roughness Coeff., n (NEH table 15-1)		0.011	0.24	
3.	Flow Length, L (total L < 100 ft)	ft	29	71	
4.	Two-year 24-hr rainfall, P ₂	in	3.36	3.36	
5.	Land Slope, s	ft/ft	0.011	0.008	
6.	Compute T_t $T_t = \frac{0.007 (nL)^{0.8}}{P_0^{0.5} s^{0.4}}$	hr	0.009	+ 0.249 +	
	$P_2^{0.5}s^{0.4}$				
				Sheet Flow Sub-Total	0.258 hours
ch -		Common to ID			
<u>sna</u>	llow Concentrated Flow	Segment ID	3 Grassed		
7.	Surface Description		Waterways		
8.	Flow Length, L	ft	78		
9.	Watercourse Slope, s	ft/ft	0.009		
10.	Average Velocity, V (NEH table 15-3)	ft/s	1.57		
11.	Compute T_t $T_t = \frac{L}{3600 V}$	hr	0.014	+ +	
	3600 V				
			Shallow	Conc. Flow Sub-Total	0.014 hours
Cha	nnel Flow	Segment ID	4		
<u>12.</u>		ft	282		
13.	Average Velocity, V	ft/s	2.00		
14.		hr	0.039	+ +	
	Compute T_t $T_t = \frac{L}{3600 V}$		J		
			Ch	annel Flow Sub-Total	0.039 hours
Wat	tershed or subarea T _c or T _t			Total Tc (hours) =	0.311 hours
	d Sub-Total T _t from prior steps)			Total Tc (minutes) =	19 minutes

Proj	ject: Project King Arthur	By:	AM	Date:	4/26/2023
Loca	ation: North Brunswick, NJ	Checked By:	PM	Date Checked:	4/26/2023
Circ	le One: Present Developed		Existin	g Watershed B - Pervious	
Circ	le One: T _c T _t through sul	oarea			
	Include a map, schematic, or description of f	low segments.			
She	et Flow (Applicable to T _c Only)	Segment ID	1	_	
1.	Surface Description (NEH table 15-1)		Dense Grasse	s	
2.	Manning's Roughness Coeff., n (NEH table 15-1)		0.24		
3.	Flow Length, L (total L < 100 ft)	ft	100		
4.	Two-year 24-hr rainfall, P ₂	in	3.36		
5.	Land Slope, s	ft/ft	0.016		
6.	Compute T _t $T_t = \frac{0.007 (nL)^{0.8}}{P_0^{0.5} s^{0.4}}$	hr	0.251	+ +	
	$P_2^{0.5} s^{0.4}$				
				Sheet Flow Sub-Total	0.251 hours
~			•		
<u>Sha</u>	llow Concentrated Flow	Segment ID	2		
7.	Surface Description		Pavement		
8.	Flow Length, L	ft	84		
9.	Watercourse Slope, s	ft/ft	0.010		
10.	Average Velocity, V (NEH table 15-3)	ft/s	1.98		
11.	Compute T_t $T_t = \frac{L}{3600 V}$	hr	0.012	+ +	
	3600 V				
			Shallo	ow Conc. Flow Sub-Total	0.012 hours
Cha	nnel Flow	Segment ID	3		
<u>12.</u>		ft	282		
13.	Average Velocity, V	ft/s	2.00		
14.		hr	0.039	+ +	
	Compute T_t $T_t = \frac{L}{3600 V}$				
				Channel Flow Sub-Total	0.039 hours
Wat	tershed or subarea T _c or T _t			Total Tc (hours) =	0.302 hours

Watershed Model Schematic

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Project: Proposed Hydrographs_Current Precipitation.gpw

Friday, 05 / 5 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Friday,	05	15	2023
i naay,	00	, 0,	2020

Watersheu Woder Schematic	Watershed Model Schematic	1
---------------------------	---------------------------	---

2 - Year

Summary Report	2
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, PR Watershed A1 (Impervious)	3
Hydrograph No. 2, SCS Runoff, PR Watershed A1 (Pervious)	4
Hydrograph No. 3, Combine, Watershed A1	5
Hydrograph No. 4, Reservoir, Basin A1	6
Pond Report - Basin A1	
Hydrograph No. 6, SCS Runoff, PR Watershed A2 (Impervious)	8
Hydrograph No. 7, SCS Runoff, PR Watershed A2 (Pervious)	9
Hydrograph No. 8, Combine, Watershed A2	. 10
Hydrograph No. 9, Reservoir, Basin A2	. 11
Pond Report - Basin A2	
Hydrograph No. 11, SCS Runoff, PR Watershed A3 (Impervious)	. 13
Hydrograph No. 12, Reservoir, UG Basin A3	
Pond Report - UG Detention A3	
Hydrograph No. 14, SCS Runoff, PR Watershed A4 (Impervious)	
Hydrograph No. 15, Combine, Watershed A4	
Hydrograph No. 16, Reservoir, UG Basin A4	
Pond Report - UG Detention A4	
Hydrograph No. 18, SCS Runoff, PR Watershed A5 (Impervious)	
Hydrograph No. 19, SCS Runoff, PR Watershed A5 (pervious)	
Hydrograph No. 20, Combine, PR Watershed A5	
Hydrograph No. 22, SCS Runoff, PR Watershed A6	
Hydrograph No. 24, Combine, Watershed A POA	
Hydrograph No. 26, SCS Runoff, PR Watershed B (Impervious)	
Hydrograph No. 27, SCS Runoff, PR Watershed B (Pervious)	
Hydrograph No. 28, Combine, Watershed B	. 27

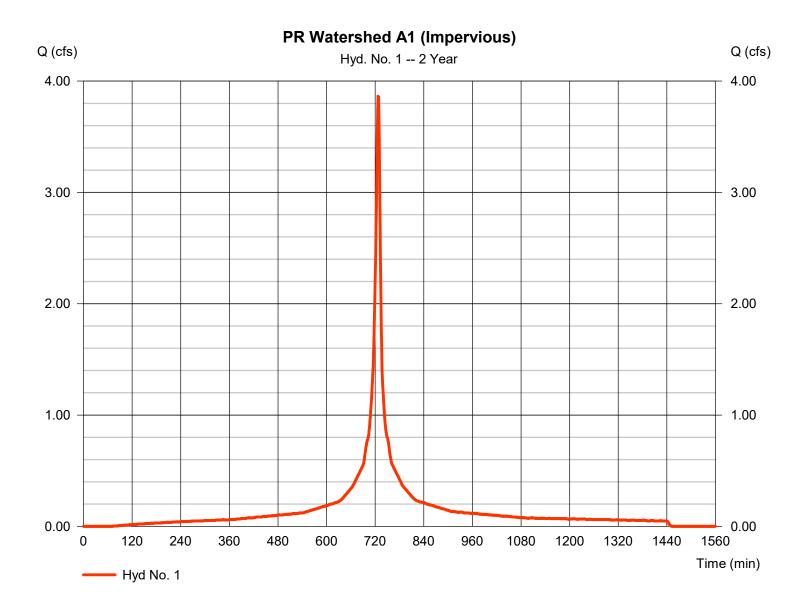
10 - Year

Summary Report	28
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, PR Watershed A1 (Impervious)	
Hydrograph No. 2, SCS Runoff, PR Watershed A1 (Pervious)	30
Hydrograph No. 3, Combine, Watershed A1	31
Hydrograph No. 4, Reservoir, Basin A1	32
Hydrograph No. 6, SCS Runoff, PR Watershed A2 (Impervious)	33
Hydrograph No. 7, SCS Runoff, PR Watershed A2 (Pervious)	34
Hydrograph No. 8, Combine, Watershed A2	35
Hydrograph No. 9, Reservoir, Basin A2	36
Hydrograph No. 11, SCS Runoff, PR Watershed A3 (Impervious)	37
Hydrograph No. 12, Reservoir, UG Basin A3	38
Hydrograph No. 14, SCS Runoff, PR Watershed A4 (Impervious)	39
Hydrograph No. 15, Combine, Watershed A4	40
Hydrograph No. 16, Reservoir, UG Basin A4	41
Hydrograph No. 18, SCS Runoff, PR Watershed A5 (Impervious)	42

Hydrograph No. 19, SCS Runoff, PR Watershed A5 (pervious)	43
Hydrograph No. 20, Combine, PR Watershed A5	
Hydrograph No. 22, SCS Runoff, PR Watershed A6	45
Hydrograph No. 24, Combine, Watershed A POA	46
Hydrograph No. 26, SCS Runoff, PR Watershed B (Impervious)	47
Hydrograph No. 27, SCS Runoff, PR Watershed B (Pervious)	
Hydrograph No. 28, Combine, Watershed B	
100 - Year	
Summary Report	50
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, PR Watershed A1 (Impervious)	51
Hydrograph No. 2, SCS Runoff, PR Watershed A1 (Pervious)	52
Hydrograph No. 3, Combine, Watershed A1	
Hydrograph No. 4, Reservoir, Basin A1	
Hydrograph No. 6, SCS Runoff, PR Watershed A2 (Impervious)	55
Hydrograph No. 7, SCS Runoff, PR Watershed A2 (Pervious)	56
Hydrograph No. 8, Combine, Watershed A2	57
Hydrograph No. 9, Reservoir, Basin A2	58
Hydrograph No. 11, SCS Runoff, PR Watershed A3 (Impervious)	59
Hydrograph No. 12, Reservoir, UG Basin A3	60
Hydrograph No. 14, SCS Runoff, PR Watershed A4 (Impervious)	61
Hydrograph No. 15, Combine, Watershed A4	
Hydrograph No. 16, Reservoir, UG Basin A4	
Hydrograph No. 18, SCS Runoff, PR Watershed A5 (Impervious)	
Hydrograph No. 19, SCS Runoff, PR Watershed A5 (pervious)	
Hydrograph No. 20, Combine, PR Watershed A5	66
Hydrograph No. 22, SCS Runoff, PR Watershed A6	
Hydrograph No. 24, Combine, Watershed A POA	68
Hydrograph No. 26, SCS Runoff, PR Watershed B (Impervious)	
Hydrograph No. 27, SCS Runoff, PR Watershed B (Pervious)	
Hydrograph No. 28, Combine, Watershed B	

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022


Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	3.864	1	727	14,515				PR Watershed A1 (Impervious)
2	SCS Runoff	1.051	1	733	4,497				PR Watershed A1 (Pervious)
3	Combine	4.731	1	728	19,012	1, 2			Watershed A1
4	Reservoir	0.668	1	776	9,725	3	48.75	10,985	Basin A1
6	SCS Runoff	5.621	1	727	21,113				PR Watershed A2 (Impervious)
7	SCS Runoff	0.650	1	732	2,638				PR Watershed A2 (Pervious)
8	Combine	6.181	1	728	23,751	6, 7			Watershed A2
9	Reservoir	0.722	1	781	12,190	8	48.84	14,405	Basin A2
11	SCS Runoff	6.441	1	727	24,192				PR Watershed A3 (Impervious)
12	Reservoir	0.000	1	858	0	11	49.98	11,787	UG Basin A3
14	SCS Runoff	4.596	1	727	17,264				PR Watershed A4 (Impervious)
15	Combine	4.596	1	727	17,264	14			Watershed A4
16	Reservoir	0.006	1	796	9	15	52.01	6,746	UG Basin A4
18	SCS Runoff	2.607	1	728	10,376				PR Watershed A5 (Impervious)
19	SCS Runoff	0.126	1	729	439				PR Watershed A5 (pervious)
20	Combine	2.731	1	728	10,815	18, 19			PR Watershed A5
22	SCS Runoff	0.962	1	735	4,441				PR Watershed A6
24	Combine	4.005	1	728	37,180	4, 9, 12, 16, 20, 22,			Watershed A POA
26	SCS Runoff	0.065	1	734	338				PR Watershed B (Impervious)
27	SCS Runoff	1.160	1	734	5,097				PR Watershed B (Pervious)
28	Combine	1.225	1	734	5,435	26, 27			Watershed B
Pro	posed Hydro	uraphs (L Current P	recipitatio	on.onBoeturn	Period: 2 Ye	⊥ ear	Friday, 05	/ 5 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

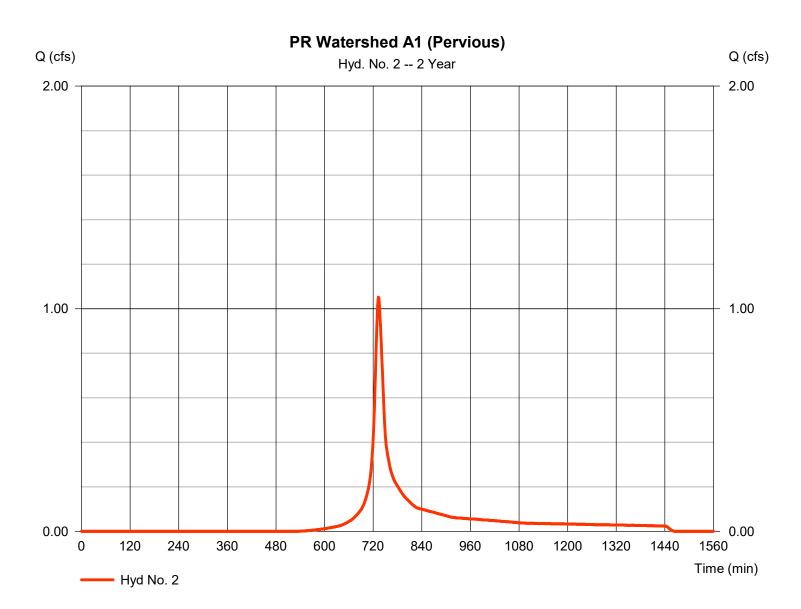
Hyd. No. 1

PR Watershed A1 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 3.864 cfs
Storm frequency	= 2 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 14,515 cuft
Drainage area	= 1.320 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= \\langan.com\data\F	PAR\data0\ 300265e1620ctoP rojectD	Dat a_434 cipline\Site Civil\Storr

3

Friday, 05 / 5 / 2023

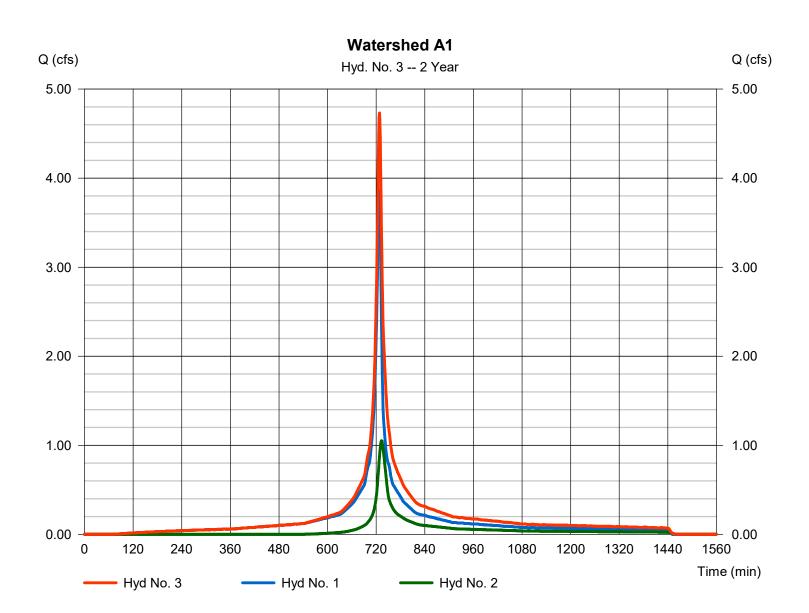

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

PR Watershed A1 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.051 cfs
Storm frequency	= 2 yrs	Time to peak	= 733 min
Time interval	= 1 min	Hyd. volume	= 4,497 cuft
Drainage area	= 0.810 ac	Curve number	= 80*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 16.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300aperfactoP roject D)at a_484 cipline\Site Civil\Storr

* Composite (Area/CN) = [(0.790 x 80) + (0.020 x 91)] / 0.810

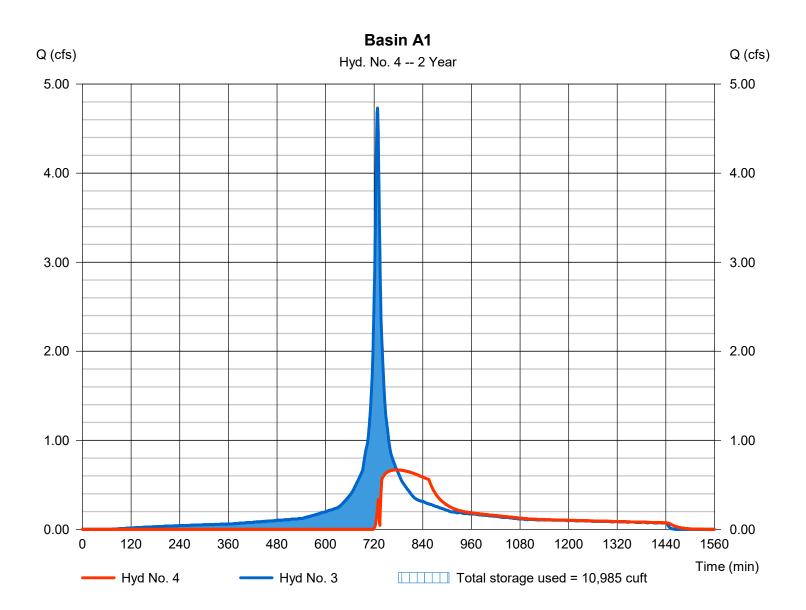


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Watershed A1

Hydrograph type	= Combine	Peak discharge	= 4.731 cfs
Storm frequency	= 2 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 19,012 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 2.130 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

Basin A1

= Reservoir	Peak discharge	= 0.668 cfs
= 2 yrs	Time to peak	= 776 min
= 1 min	Hyd. volume	= 9,725 cuft
= 3 - Watershed A1	Max. Elevation	= 48.75 ft
= Basin A1	Max. Storage	= 10,985 cuft
	= 2 yrs = 1 min = 3 - Watershed A1	= 2 yrsTime to peak= 1 minHyd. volume= 3 - Watershed A1Max. Elevation

Storage Indication method used.

Pond Report

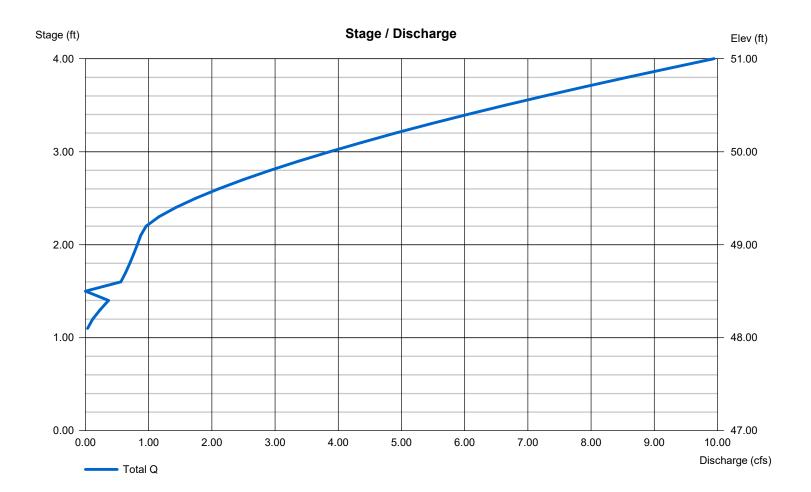
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 1 - Basin A1

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 47.00 ft

Stage / Storage Table

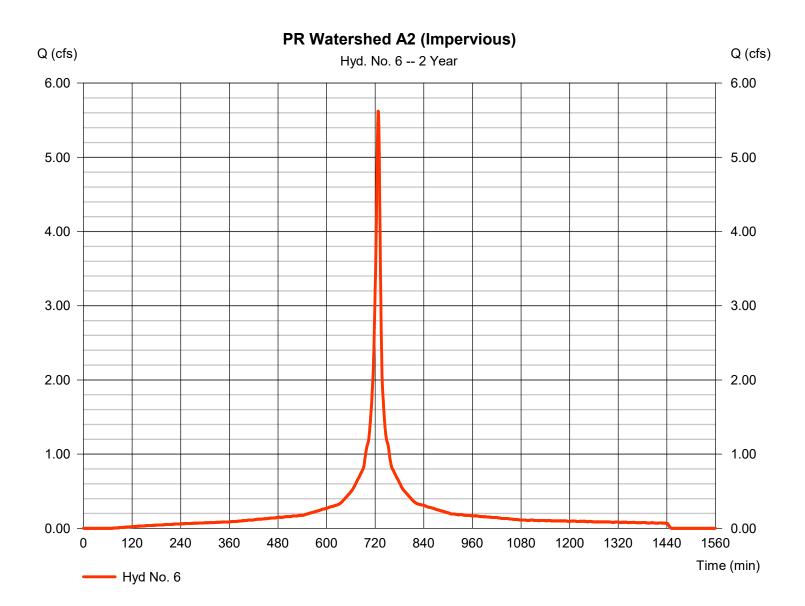

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	47.00	5,443	0	0	
1.00	48.00	6,344	5,887	5,887	
2.00	49.00	7,260	6,796	12,683	
3.00	50.00	8,216	7,732	20,416	
4.00	51.00	9,219	8,712	29,127	

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	6.00	0.00	0.00	Crest Len (ft)	= 1.00	Inactive	0.00	0.00
Span (in)	= 24.00	6.00	0.00	0.00	Crest El. (ft)	= 49.15	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 44.00	48.00	0.00	0.00	Weir Type	= Rect			
Length (ft)	= 5.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 2.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

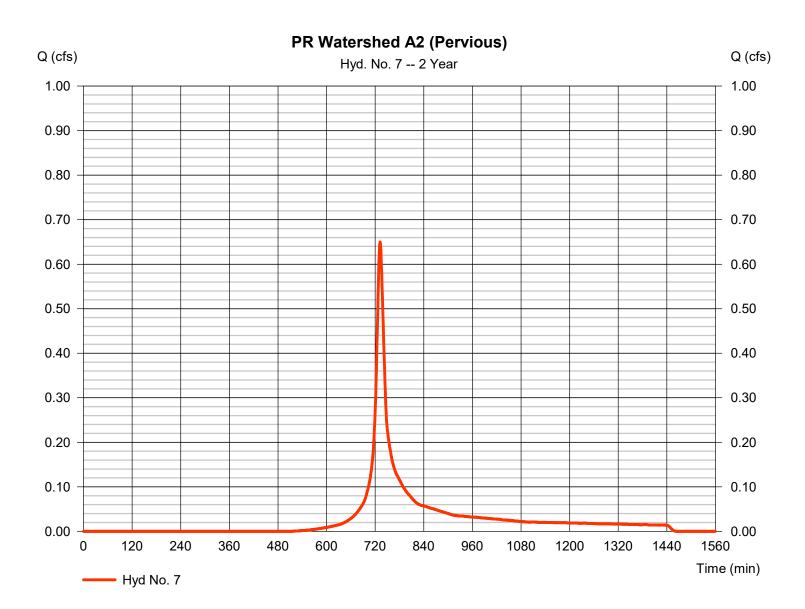


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

PR Watershed A2 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 5.621 cfs
Storm frequency	= 2 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 21,113 cuft
Drainage area	= 1.920 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300365e1620ctoP roject D	0at a∖_48e cipline∖Site Civil∖Storr

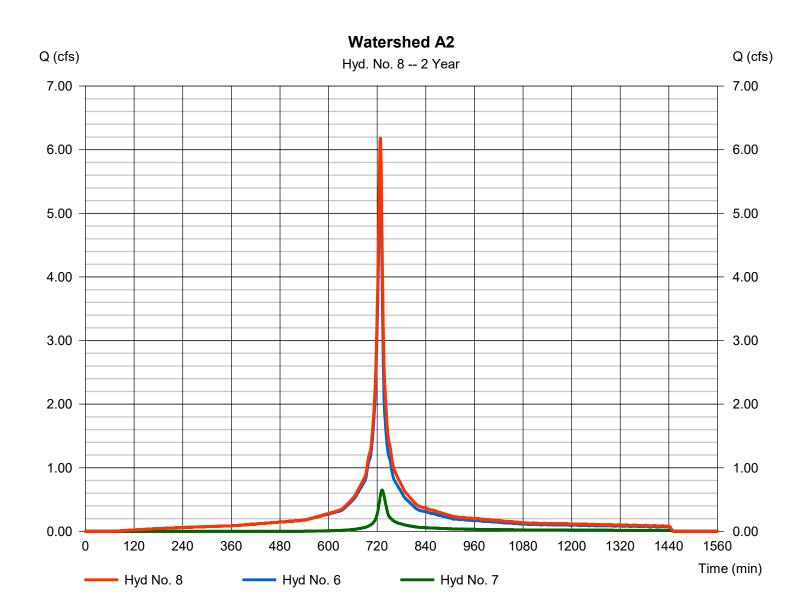

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

PR Watershed A2 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.650 cfs
Storm frequency	= 2 yrs	Time to peak	= 732 min
Time interval	= 1 min	Hyd. volume	= 2,638 cuft
Drainage area	= 0.460 ac	Curve number	= 81*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 14.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	PAR\data0\1800465611640c1&Project D)at a_434 cipline\Site Civil\Storr

* Composite (Area/CN) = [(0.410 x 80) + (0.050 x 91)] / 0.460

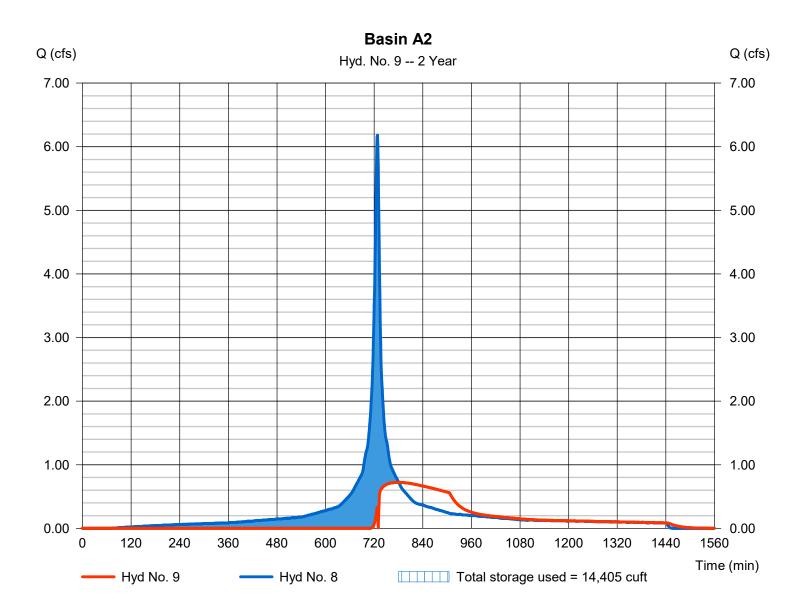


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Watershed A2

Hydrograph type	 Combine 2 yrs 1 min 6, 7 	Peak discharge	= 6.181 cfs
Storm frequency		Time to peak	= 728 min
Time interval		Hyd. volume	= 23,751 cuft
Inflow hyds.		Contrib. drain. area	= 2.380 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Basin A2

= Reservoir	Peak discharge	= 0.722 cfs
= 2 yrs	Time to peak	= 781 min
= 1 min	Hyd. volume	= 12,190 cuft
= 8 - Watershed A2	Max. Elevation	= 48.84 ft
= Basin A2	Max. Storage	= 14,405 cuft
	= 2 yrs = 1 min = 8 - Watershed A2	= 2 yrsTime to peak= 1 minHyd. volume= 8 - Watershed A2Max. Elevation

Storage Indication method used.

Pond Report

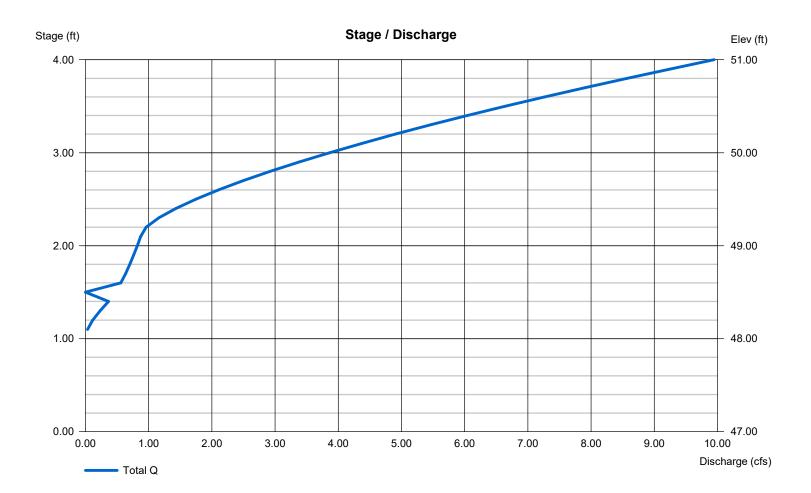
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 5 - Basin A2

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 47.00 ft

Stage / Storage Table

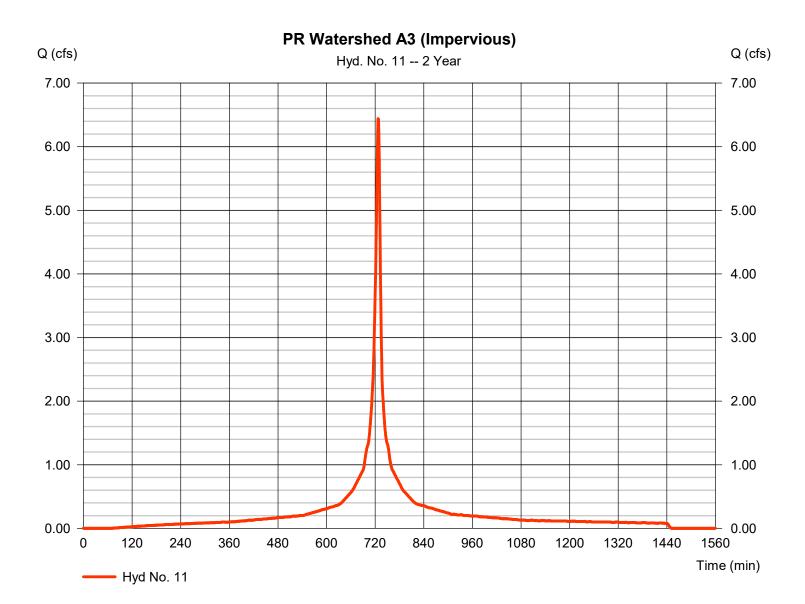

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	47.00	6,733	0	0	
1.00	48.00	7,912	7,314	7,314	
2.00	49.00	9,088	8,492	15,806	
3.00	50.00	10,268	9,671	25,477	
4.00	51.00	11,468	10,861	36,339	

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	6.00	0.00	0.00	Crest Len (ft)	= 1.00	0.00	0.00	0.00
Span (in)	= 24.00	6.00	0.00	0.00	Crest El. (ft)	= 49.15	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 44.00	48.00	0.00	0.00	Weir Type	= Rect			
Length (ft)	= 20.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 2.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	/ Contour)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures



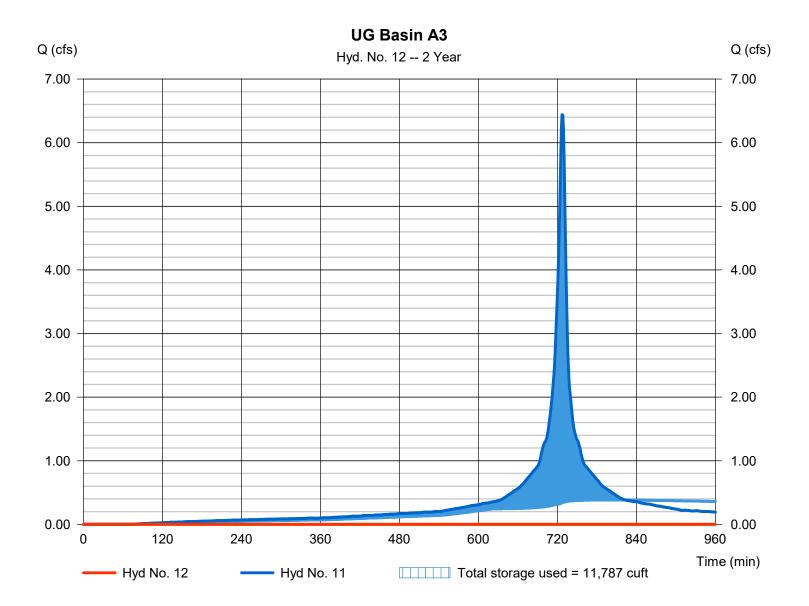
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

PR Watershed A3 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 6.441 cfs
Storm frequency	= 2 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 24,192 cuft
Drainage area	= 2.200 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ \$00365e1factoP rojectD)at <mark>a∖_484</mark> cipline∖Site Civil∖Storr

13


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 12

UG Basin A3

Hydrograph type Storm frequency Time interval Inflow hyd. No.	 Reservoir 2 yrs 1 min 11 - PR Watershed A3 (Imper 10) 	,	= 0.000 cfs = 858 min = 0 cuft = 49.98 ft
Reservoir name	= UG Detention A3	Max. Storage	= 11,787 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

Pond Report

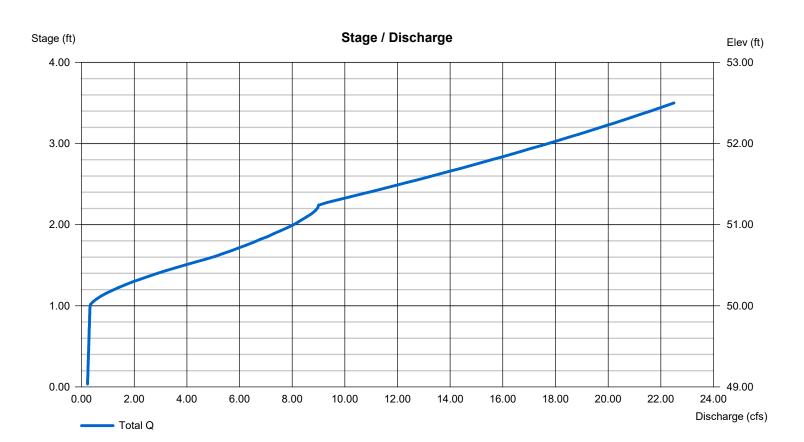
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 4 - UG Detention A3

Pond Data

UG Chambers -Invert elev. = 49.50 ft, Rise x Span = 2.50×4.25 ft, Barrel Len = 7.12 ft, No. Barrels = 235, Slope = 0.00%, Headers = Yes **Encasement -**Invert elev. = 49.00 ft, Width = 4.67 ft, Height = 3.50 ft, Voids = 40.00%

Stage / Storage Table

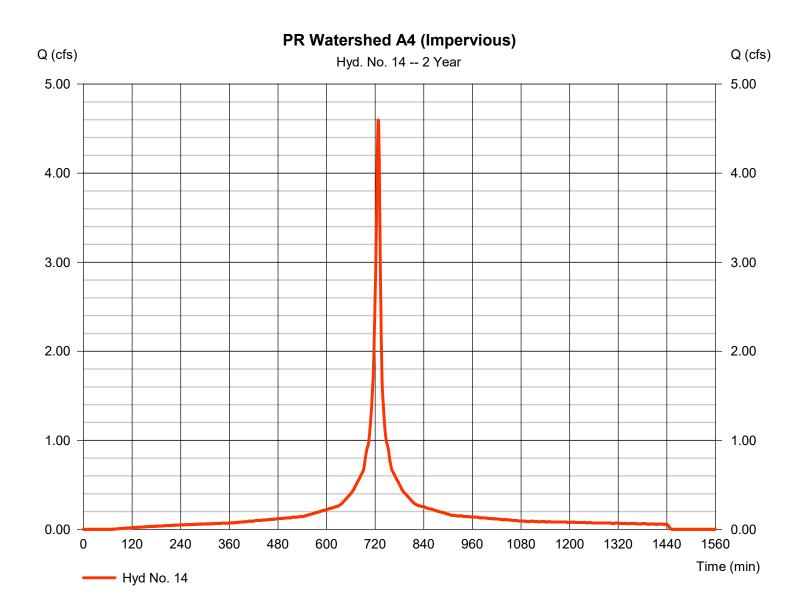

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	49.00	n/a	0	0
0.35	49.35	n/a	2,529	2,529
0.70	49.70	n/a	4,500	7,029
1.05	50.05	n/a	5,940	12,969
1.40	50.40	n/a	5,830	18,799
1.75	50.75	n/a	5,642	24,442
2.10	51.10	n/a	5,361	29,802
2.45	51.45	n/a	4,952	34,755
2.80	51.80	n/a	4,328	39,083
3.15	52.15	n/a	3,049	42,132
3.50	52.50	n/a	2,529	44,661

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	0.00	0.00	0.00	Crest Len (ft)	= 3.00	0.00	0.00	0.00
Span (in)	= 24.00	0.00	0.00	0.00	Crest El. (ft)	= 50.00	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 49.00	0.00	0.00	0.00	Weir Type	= Rect			
Length (ft)	= 20.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 1.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.750 (by	vWet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Weir Structures

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

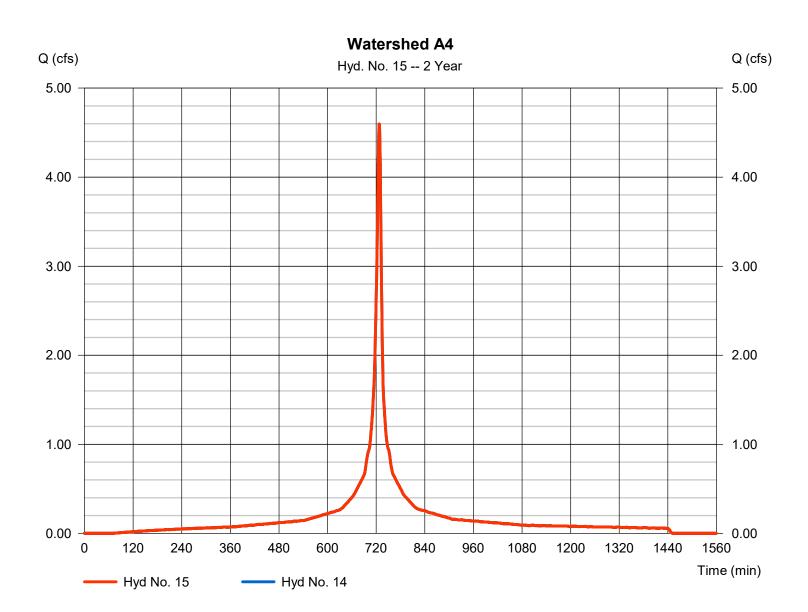


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 14

PR Watershed A4 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 4.596 cfs
Storm frequency	= 2 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 17,264 cuft
Drainage area	= 1.570 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	PAR\data0\80044561640ctoProjectD	0at a∖_48e cipline∖Site Civil∖Storr



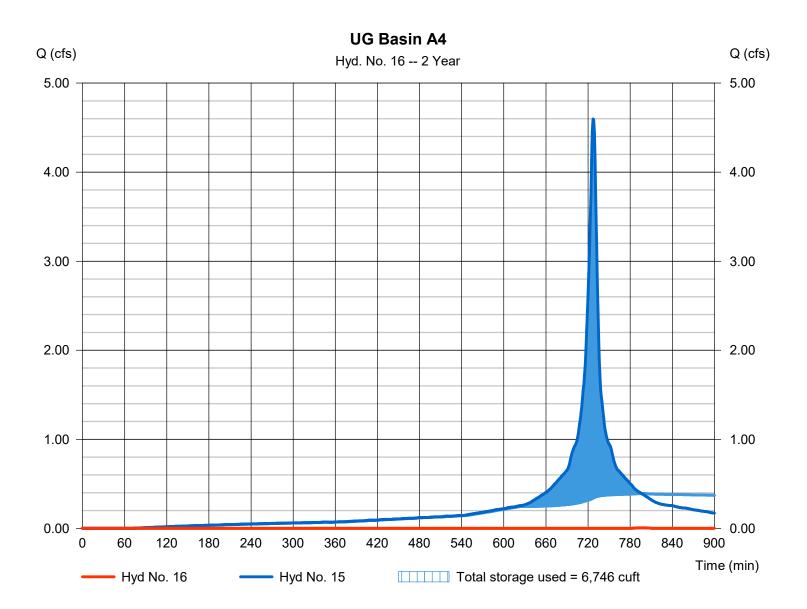
16

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 15

Watershed A4

17


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 16

UG Basin A4

Hydrograph type	= Reservoir	Peak discharge	= 0.006 cfs
Storm frequency	= 2 yrs	Time to peak	= 796 min
Time interval	= 1 min	Hyd. volume	= 9 cuft
Inflow hyd. No.	= 15 - Watershed A4	Max. Elevation	= 52.01 ft
Reservoir name	= UG Detention A4	Max. Storage	= 6,746 cuft
		•	

Storage Indication method used. Exfiltration extracted from Outflow.

18

Pond Report

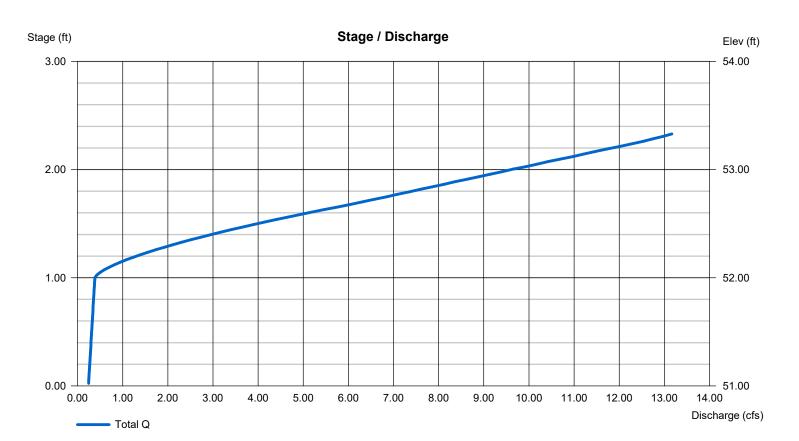
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 3 - UG Detention A4

Pond Data

UG Chambers -Invert elev. = 51.50 ft, Rise x Span = 1.33×2.83 ft, Barrel Len = 7.12 ft, No. Barrels = 429, Slope = 0.00%, Headers = No **Encasement -**Invert elev. = 51.00 ft, Width = 3.42 ft, Height = 2.33 ft, Voids = 40.00%

Stage / Storage Table

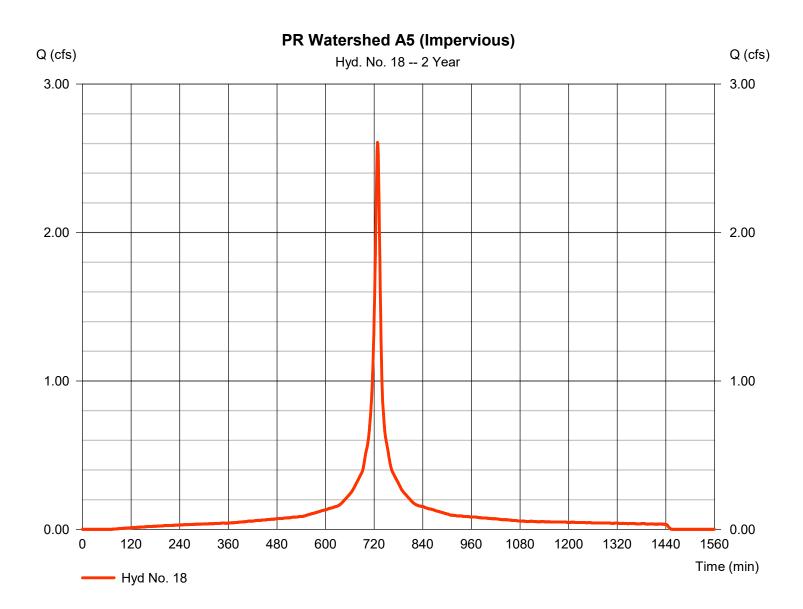

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	51.00	n/a	0	0
0.23	51.23	n/a	974	974
0.47	51.47	n/a	974	1,948
0.70	51.70	n/a	2,002	3,950
0.93	51.93	n/a	2,146	6,096
1.17	52.17	n/a	2,073	8,169
1.40	52.40	n/a	1,949	10,118
1.63	52.63	n/a	1,750	11,867
1.86	52.86	n/a	1,342	13,209
2.10	53.10	n/a	974	14,183
2.33	53.33	n/a	974	15,157

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	0.00	0.00	0.00	Crest Len (ft)	= 3.00	0.00	0.00	0.00
Span (in)	= 24.00	0.00	0.00	0.00	Crest El. (ft)	= 52.00	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 51.00	0.00	0.00	0.00	Weir Type	= Rect			
Length (ft)	= 20.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 2.50	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 1.000 (by	/Wet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Weir Structures

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

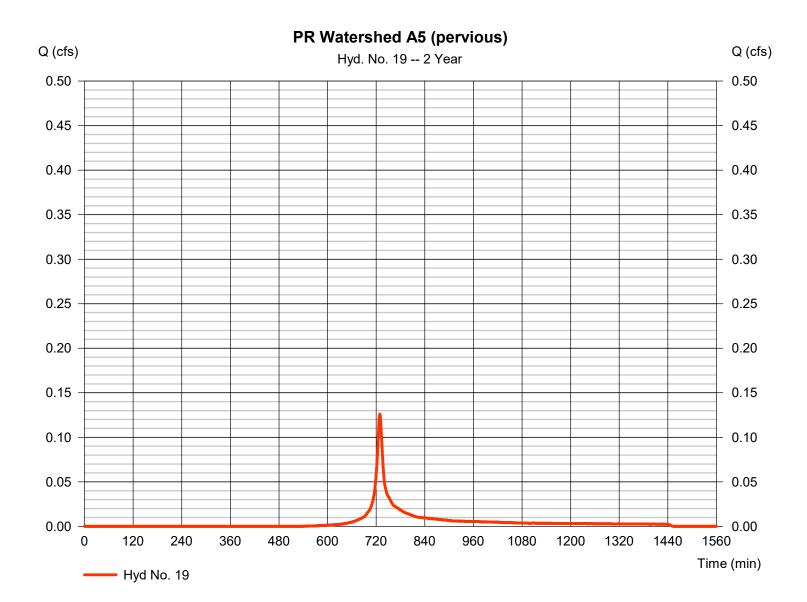


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 18

PR Watershed A5 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 2.607 cfs
Storm frequency	= 2 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 10,376 cuft
Drainage area	= 0.920 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	PAR\data0\80044561640CtoProjectD	0at a∖_48e cipline∖Site Civil∖Storr

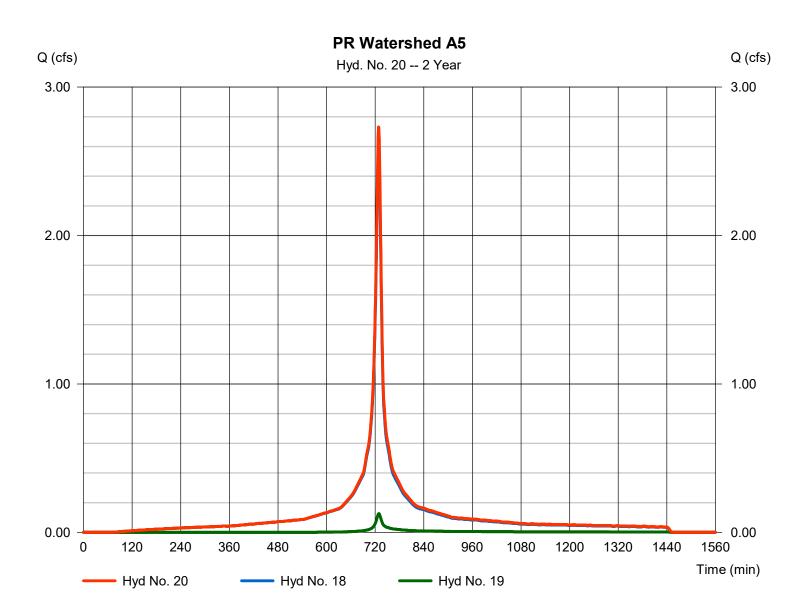


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 19

PR Watershed A5 (pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.126 cfs
Storm frequency	= 2 yrs	Time to peak	= 729 min
Time interval	= 1 min	Hyd. volume	= 439 cuft
Drainage area	= 0.080 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	R\data0\8004661640ctoProject D	0at a∖_t28∉ cipline∖Site Civil∖Storr

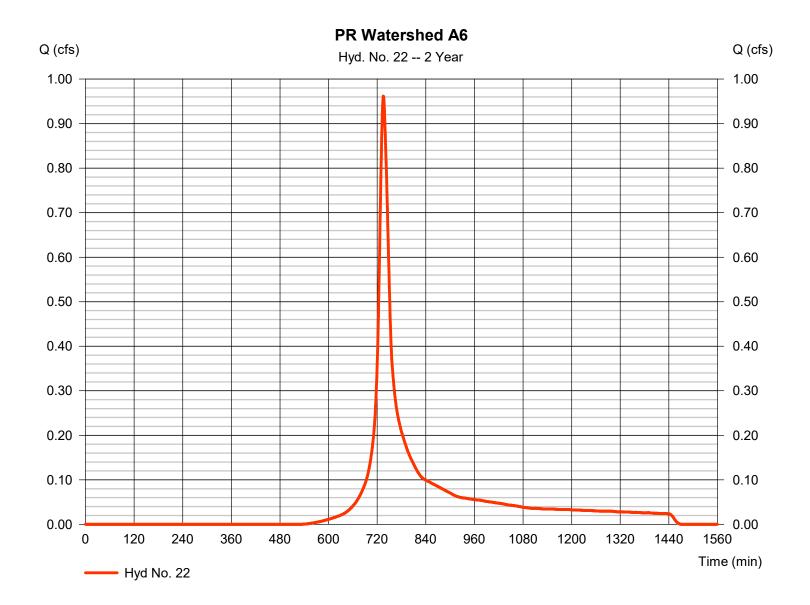


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 20

PR Watershed A5

Hydrograph type	= Combine	Peak discharge	= 2.731 cfs
Storm frequency	= 2 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 10,815 cuft
Inflow hyds.	= 18, 19	Contrib. drain. area	= 1.000 ac
-			

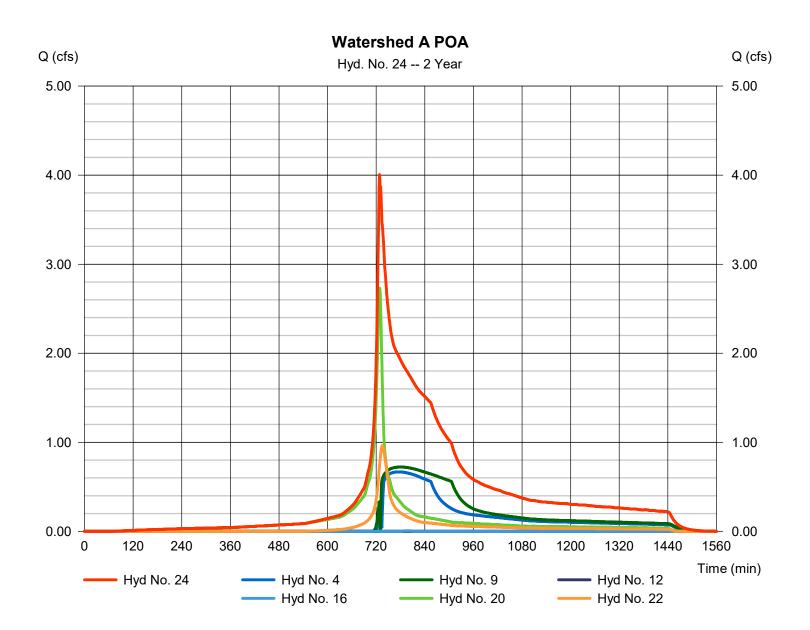


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 22

PR Watershed A6

Hydrograph type	= SCS Runoff	Peak discharge	= 0.962 cfs
Storm frequency	= 2 yrs	Time to peak	= 735 min
Time interval	= 1 min	Hyd. volume	= 4,441 cuft
Drainage area	= 0.810 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ \$0030561520ctoP roject D	Dat a∖_43e cipline∖Site Civil∖Storr

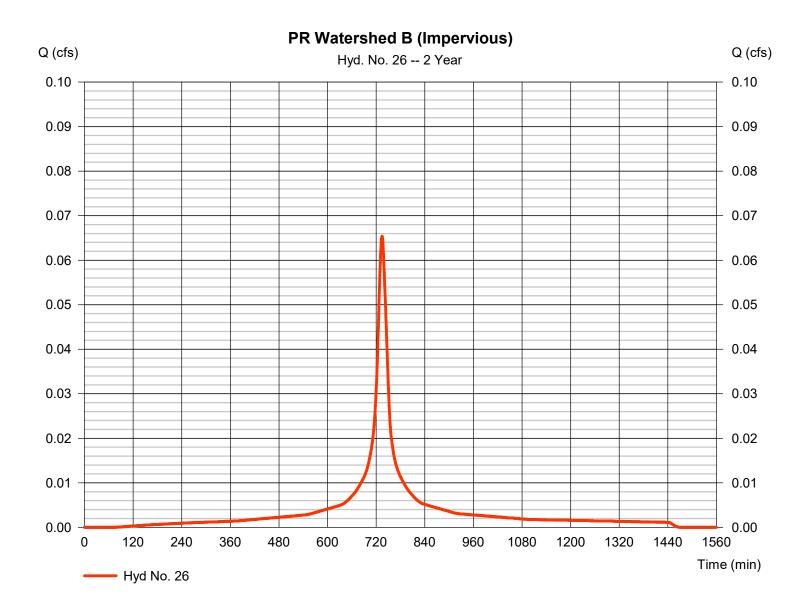


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 24

Watershed A POA

Hydrograph type	= Combine	Peak discharge	= 4.005 cfs
Storm frequency	= 2 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 37,180 cuft
Inflow hyds.	= 4, 9, 12, 16, 20, 22	Contrib. drain. area	= 0.810 ac
5) -)) -) -)	-	

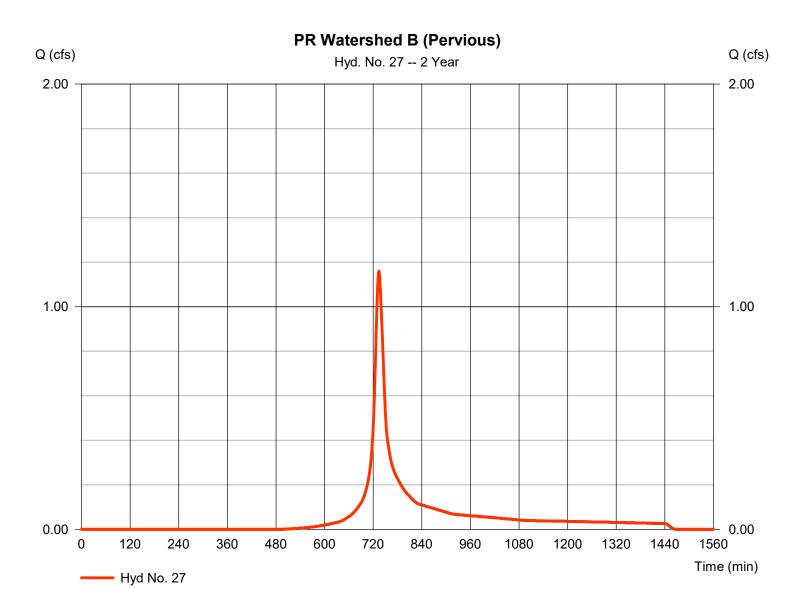


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 26

PR Watershed B (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.065 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 338 cuft
Drainage area	= 0.030 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	AR\data0\ 800365e1620ctoP roject D)ata_ 484 cipline\Site Civil\Storn

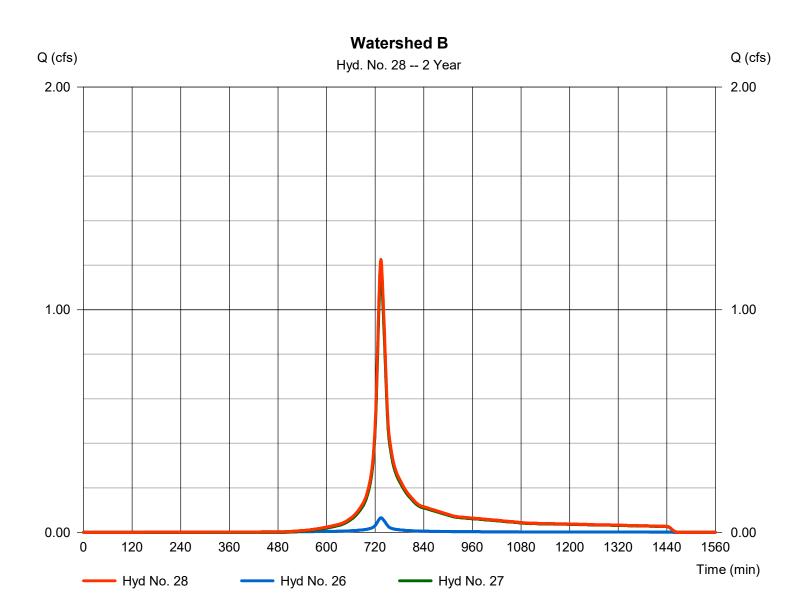

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 27

PR Watershed B (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.160 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 5,097 cuft
Drainage area	= 0.860 ac	Curve number	= 82*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.00 min
Total precip.	= 3.34 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	PAR\data0\ 800245e1f20ctoP roject D)at a∖_43st cipline∖Site Civil∖Storr

* Composite (Area/CN) = [(0.700 x 80) + (0.020 x 77) + (0.140 x 91)] / 0.860



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 28

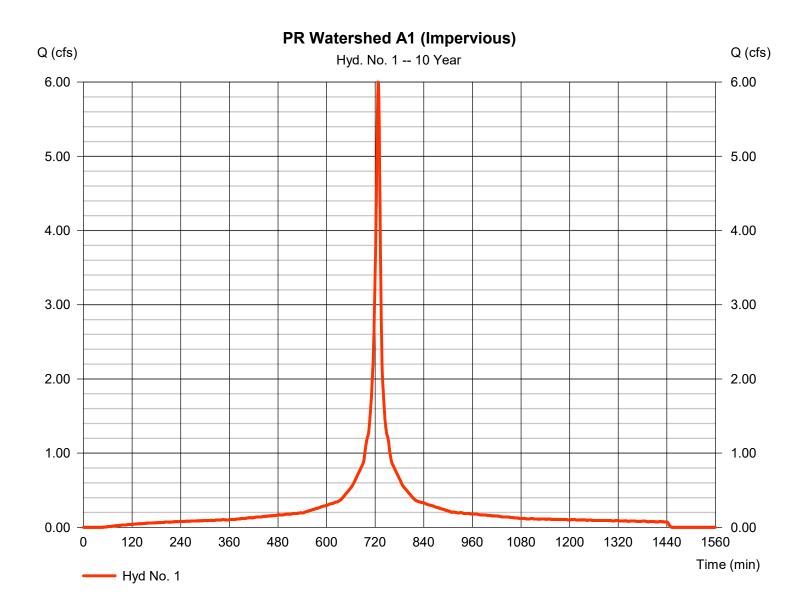
Watershed B

Hydrograph type	 Combine 2 yrs 1 min 26, 27 	Peak discharge	= 1.225 cfs
Storm frequency		Time to peak	= 734 min
Time interval		Hyd. volume	= 5,435 cuft
Inflow hyds.		Contrib. drain. area	= 0.890 ac
innow nyds.	- 20, 27	Contrib. drain. area	- 0.090 ac

27

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

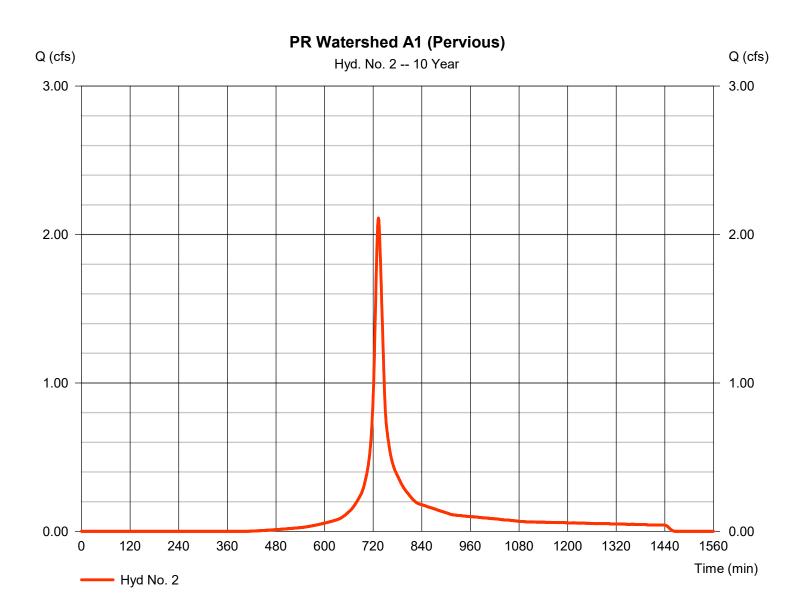

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	5.999	1	727	22,952				PR Watershed A1 (Impervious)
2	SCS Runoff	2.111	1	733	9,003				PR Watershed A1 (Pervious)
3	Combine	7.785	1	728	31,955	1, 2			Watershed A1
4	Reservoir	1.811	1	754	22,669	3	49.52	16,689	Basin A1
6	SCS Runoff	8.725	1	727	33,385				PR Watershed A2 (Impervious)
7	SCS Runoff	1.279	1	732	5,207				PR Watershed A2 (Pervious)
8	Combine	9.851	1	728	38,592	6, 7			Watershed A2
9	Reservoir	1.955	1	754	27,030	8	49.56	21,207	Basin A2
11	SCS Runoff	9.998	1	727	38,254				PR Watershed A3 (Impervious)
12	Reservoir	1.309	1	757	8,711	11	50.26	16,433	UG Basin A3
14	SCS Runoff	7.135	1	727	27,299				PR Watershed A4 (Impervious)
15	Combine	7.135	1	727	27,299	14			Watershed A4
16	Reservoir	1.604	1	741	5,420	15	52.30	9,259	UG Basin A4
18	SCS Runoff	4.047	1	728	16,407				PR Watershed A5 (Impervious)
19	SCS Runoff	0.251	1	729	878				PR Watershed A5 (pervious)
20	Combine	4.297	1	728	17,285	18, 19			PR Watershed A5
22	SCS Runoff	1.935	1	735	8,892				PR Watershed A6
24	Combine	9.548	1	735	90,007	4, 9, 12, 16, 20, 22,			Watershed A POA
26	SCS Runoff	0.102	1	734	535				PR Watershed B (Impervious)
27	SCS Runoff	2.247	1	734	9,918				PR Watershed B (Pervious)
28	Combine	2.348	1	734	10,453	26, 27			Watershed B
Pro	posed Hydro	graphs_C	Current P	recipitatio	on.gRoeturn I	Period: 10 Y	′ear	Friday, 05	/ 5 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

PR Watershed A1 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 5.999 cfs
Storm frequency	= 10 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 22,952 cuft
Drainage area	= 1.320 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 5.15 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ \$00365e1620ctoP rojectD)at a∖_484 cipline∖Site Civil∖Storr

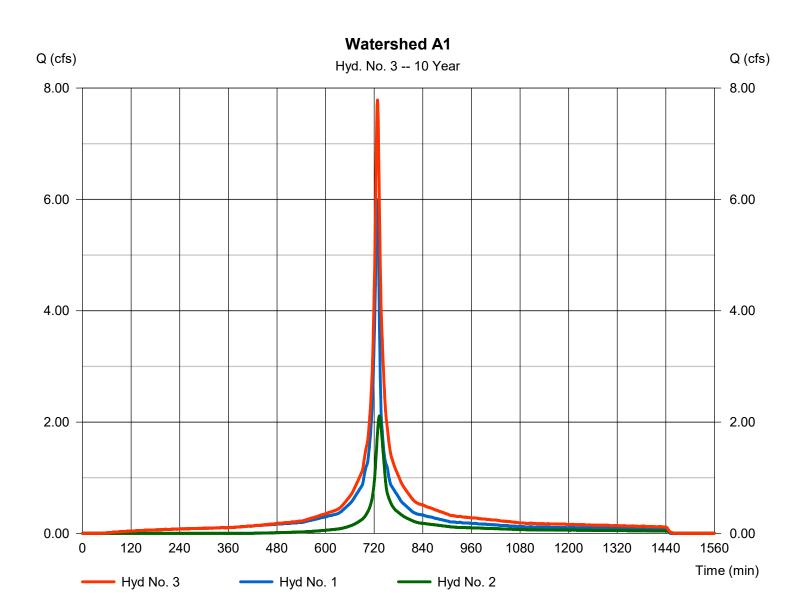

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

PR Watershed A1 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 2.111 cfs
Storm frequency	= 10 yrs	Time to peak	= 733 min
Time interval	= 1 min	Hyd. volume	= 9,003 cuft
Drainage area	= 0.810 ac	Curve number	= 80*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 16.00 min
Total precip.	= 5.15 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\80086661620ctoProjectD)at a_4384 cipline\Site Civil\Storr

* Composite (Area/CN) = [(0.790 x 80) + (0.020 x 91)] / 0.810


30

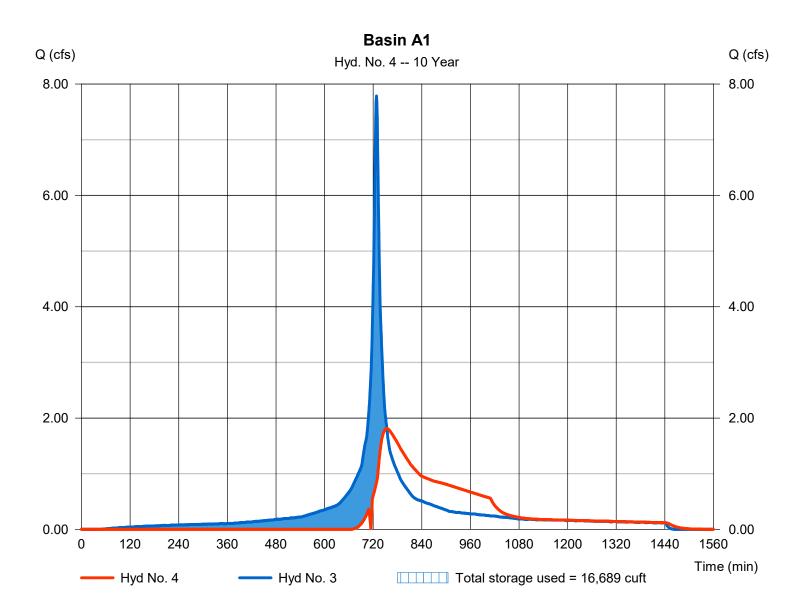
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Watershed A1

Hydrograph type	= Combine	Peak discharge	= 7.785 cfs
Storm frequency	= 10 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 31,955 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 2.130 ac

31

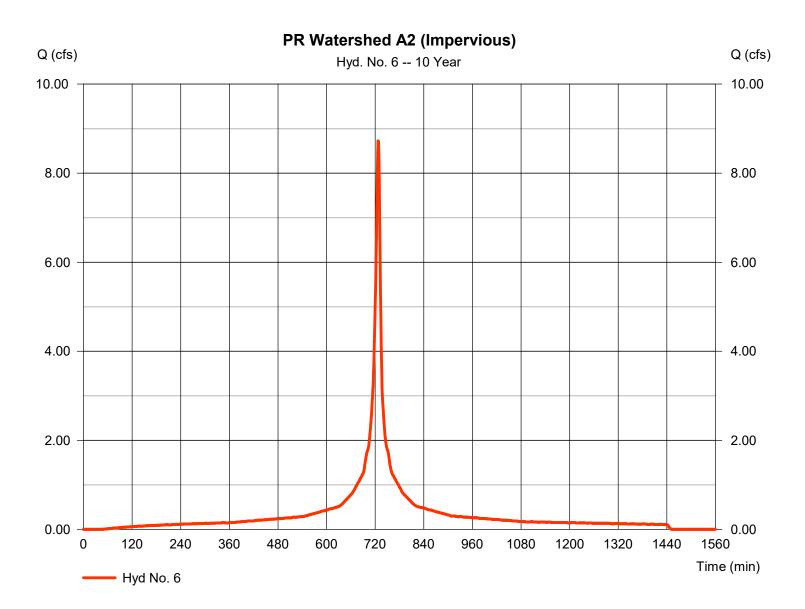

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

Basin A1

Hydrograph type	= Reservoir	Peak discharge	= 1.811 cfs
Storm frequency	= 10 yrs	Time to peak	= 754 min
Time interval	= 1 min	Hyd. volume	= 22,669 cuft
Inflow hyd. No.	= 3 - Watershed A1	Max. Elevation	= 49.52 ft
Reservoir name	= Basin A1	Max. Storage	= 16,689 cuft

Storage Indication method used.

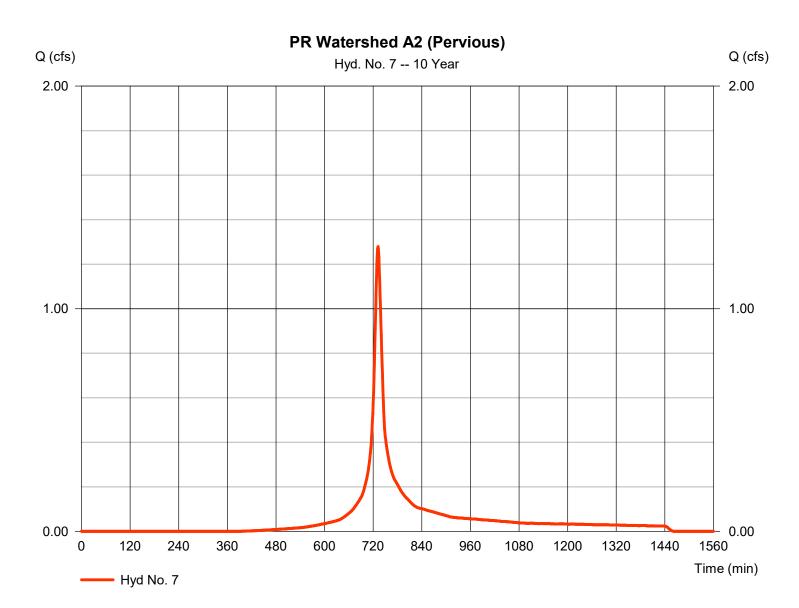


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

PR Watershed A2 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 8.725 cfs
Storm frequency	= 10 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 33,385 cuft
Drainage area	= 1.920 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 5.15 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	AR\data0\ 800365eff20ctoP rojectD	Dat a_434 cipline\Site Civil\Storn

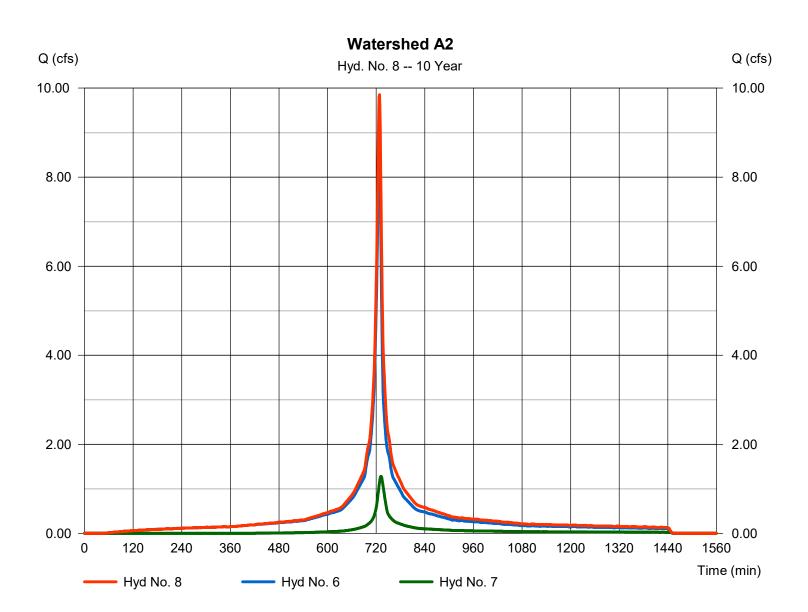

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

PR Watershed A2 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.279 cfs
Storm frequency	= 10 yrs	Time to peak	= 732 min
Time interval	= 1 min	Hyd. volume	= 5,207 cuft
Drainage area	= 0.460 ac	Curve number	= 81*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 14.00 min
Total precip.	= 5.15 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300366ffactoP rojectD)at a_484 cipline\Site Civil\Storr

* Composite (Area/CN) = [(0.410 x 80) + (0.050 x 91)] / 0.460

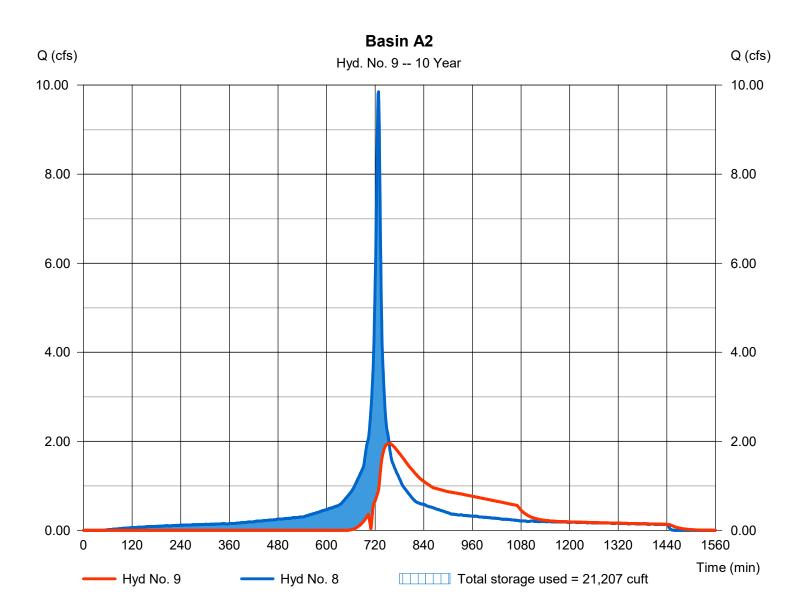

34

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Watershed A2

Hydrograph type	= Combine	Peak discharge	= 9.851 cfs
Storm frequency	= 10 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 38,592 cuft
Inflow hyds.	= 6, 7	Contrib. drain. area	= 2.380 ac
inite in type:	0, 1		2.000 40

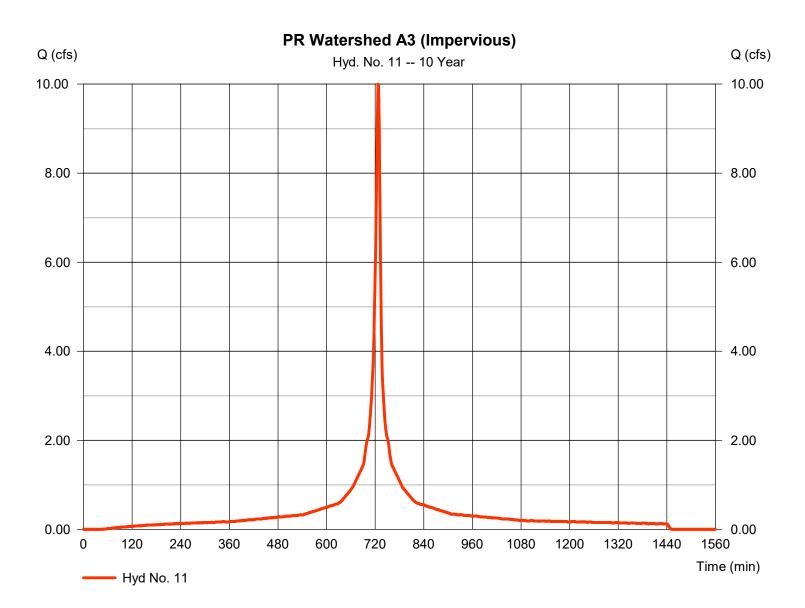

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Basin A2

Hydrograph type	= Reservoir	Peak discharge	= 1.955 cfs
Storm frequency	= 10 yrs	Time to peak	= 754 min
Time interval	= 1 min	Hyd. volume	= 27,030 cuft
Inflow hyd. No.	= 8 - Watershed A2	Max. Elevation	= 49.56 ft
Reservoir name	= Basin A2	Max. Storage	= 21,207 cuft

Storage Indication method used.

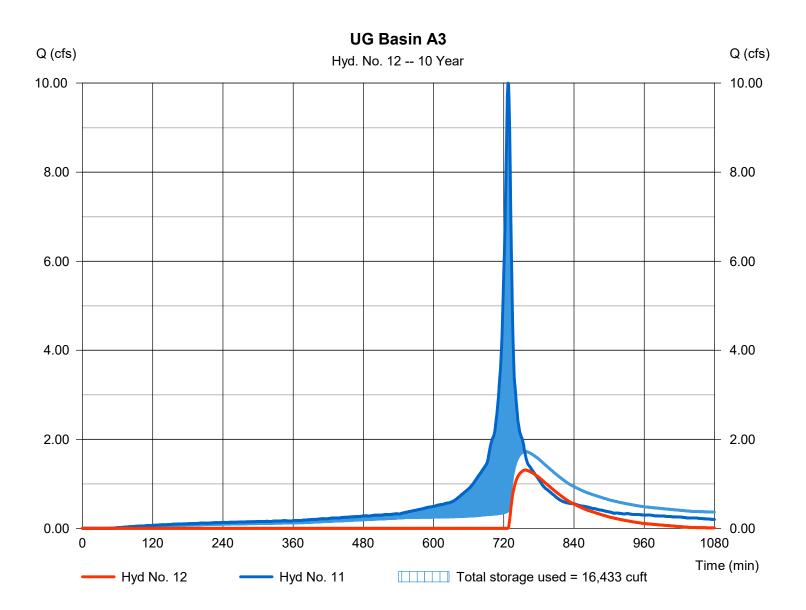


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

PR Watershed A3 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 9.998 cfs
Storm frequency	= 10 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 38,254 cuft
Drainage area	= 2.200 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 5.15 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	R\data0\ 1300465elf20ctoP rojectD	0at a∖_48e cipline∖Site Civil∖Storr

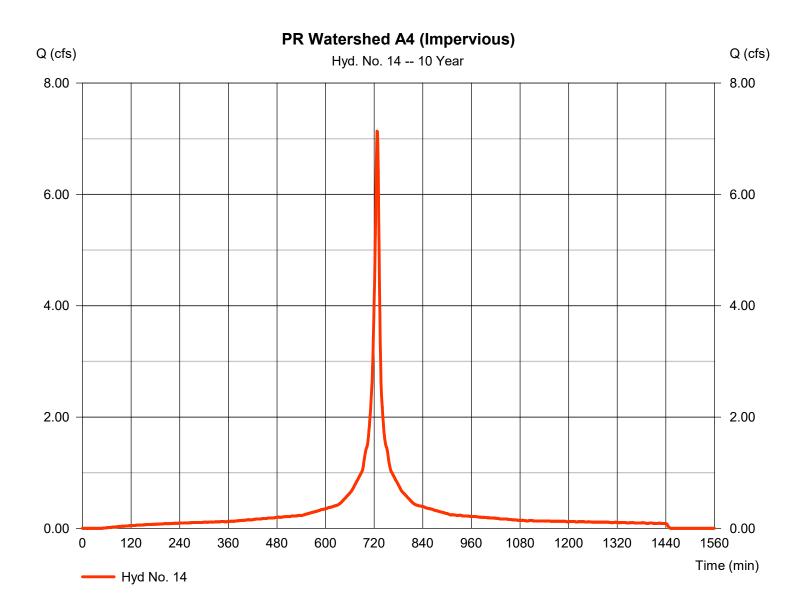

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 12

UG Basin A3

Storm frequency= 10 yrsTime to peak= 757 minTime interval= 1 minHyd. volume= 8,711 cuftInflow hyd. No.= 11 - PR Watershed A3 (Imperviloaus) Elevation= 50.26 ftReservoir name= UG Detention A3Max. Storage= 16,433 cu	
Reservoir name= UG Detention A3Max. Storage= 16,433 cu	ft

Storage Indication method used. Exfiltration extracted from Outflow.

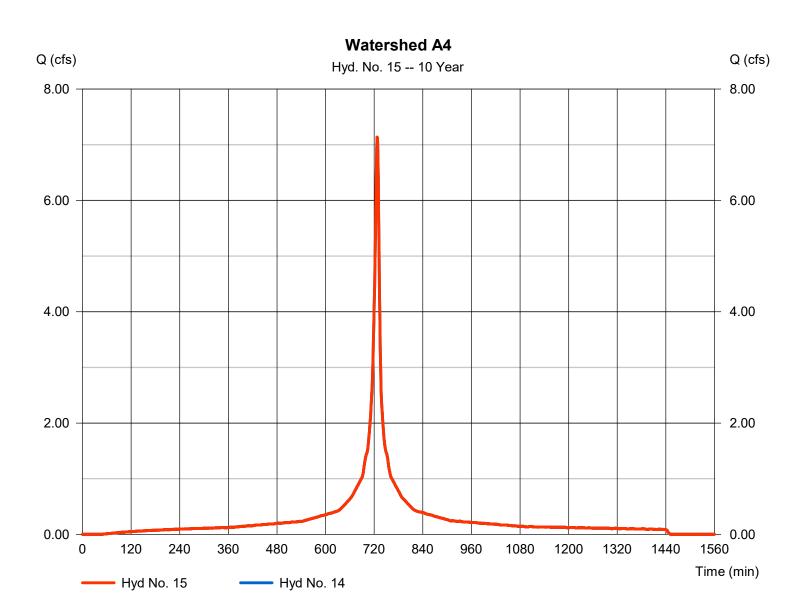


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 14

PR Watershed A4 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 7.135 cfs
Storm frequency	= 10 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 27,299 cuft
Drainage area	= 1.570 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 5.15 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	AR\data0\ 300365elf20ctoP rojectD	0at a∖_48e cipline∖Site Civil∖Storr

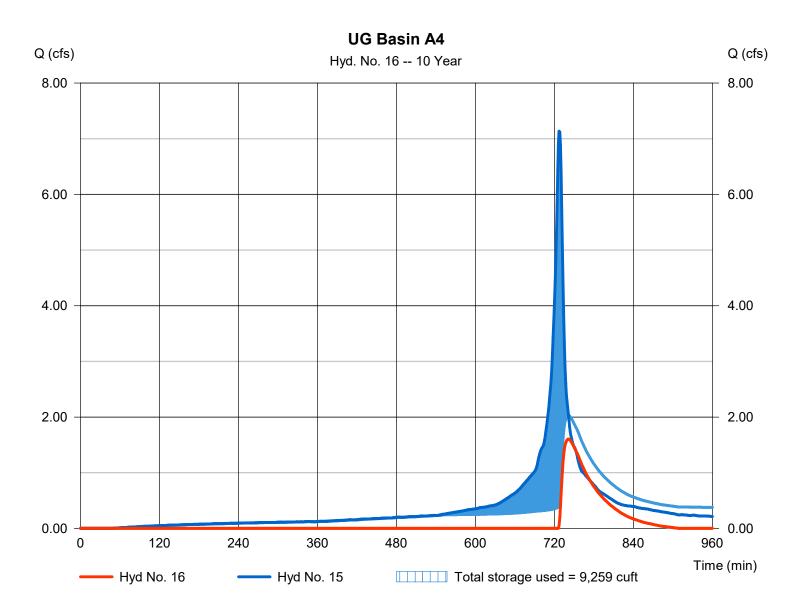


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 15

Watershed A4

Inflow hyds. = 14 Contrib. drain. area = 1.570 ac	Hydrograph type	= Combine	Peak discharge	= 7.135 cfs
	Storm frequency	= 10 yrs	Time to peak	= 727 min
	Time interval	= 1 min	Hyd. volume	= 27,299 cuft
	Inflow hyds.	= 14	Contrib. drain. area	= 1.570 ac

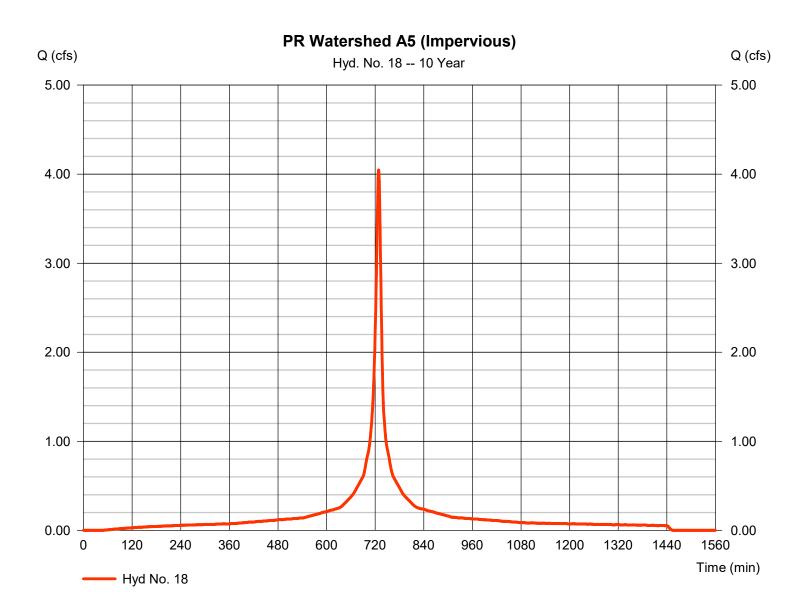

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 16

UG Basin A4

= Reservoir	Peak discharge	= 1.604 cfs
= 10 yrs	Time to peak	= 741 min
= 1 min	Hyd. volume	= 5,420 cuft
= 15 - Watershed A4	Max. Elevation	= 52.30 ft
= UG Detention A4	Max. Storage	= 9,259 cuft
	= 10 yrs = 1 min = 15 - Watershed A4	= 10 yrsTime to peak= 1 minHyd. volume= 15 - Watershed A4Max. Elevation

Storage Indication method used. Exfiltration extracted from Outflow.

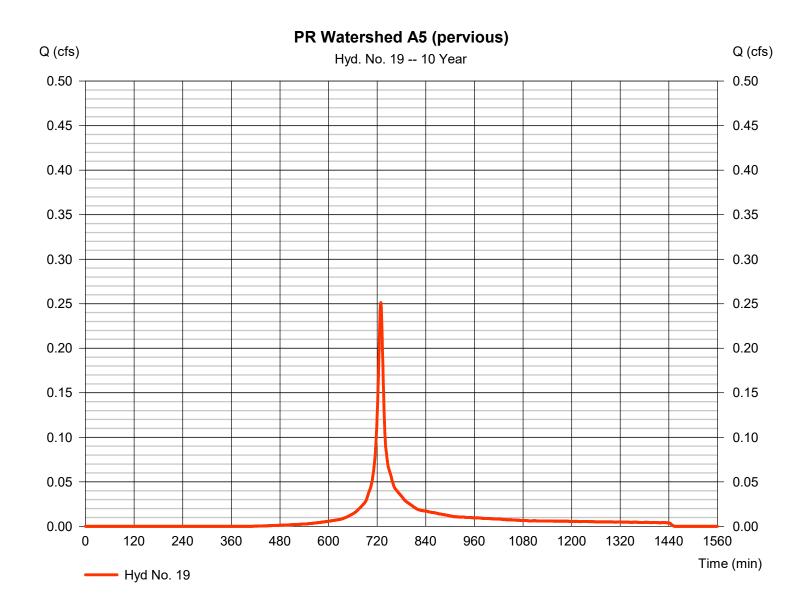


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 18

PR Watershed A5 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 4.047 cfs
Storm frequency	= 10 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 16,407 cuft
Drainage area	= 0.920 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 5.15 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300366ffactoP rojectD)at a_434 cipline\Site Civil\Storn

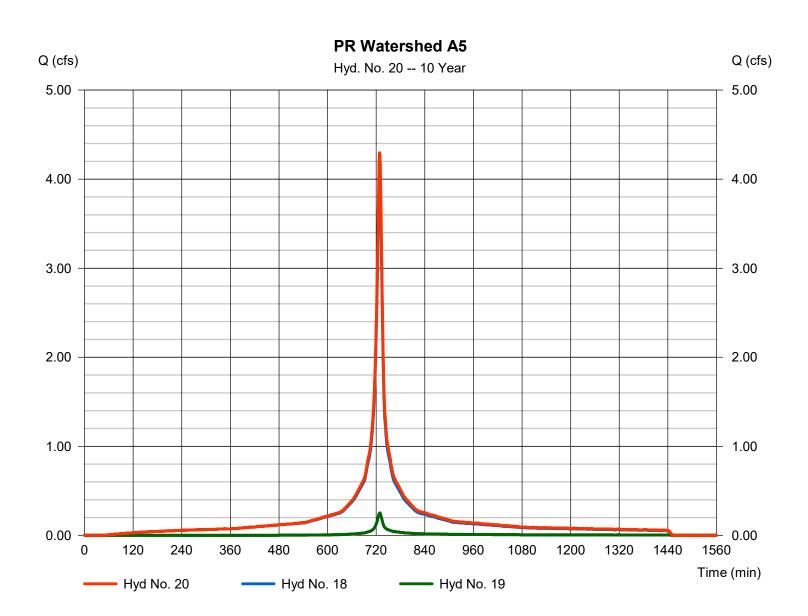


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 19

PR Watershed A5 (pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.251 cfs
Storm frequency	= 10 yrs	Time to peak	= 729 min
Time interval	= 1 min	Hyd. volume	= 878 cuft
Drainage area	= 0.080 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 5.15 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	R\data0\ 8003551f20ctoP roject D	0at a∖_4384 cipline∖Site Civil∖Storr

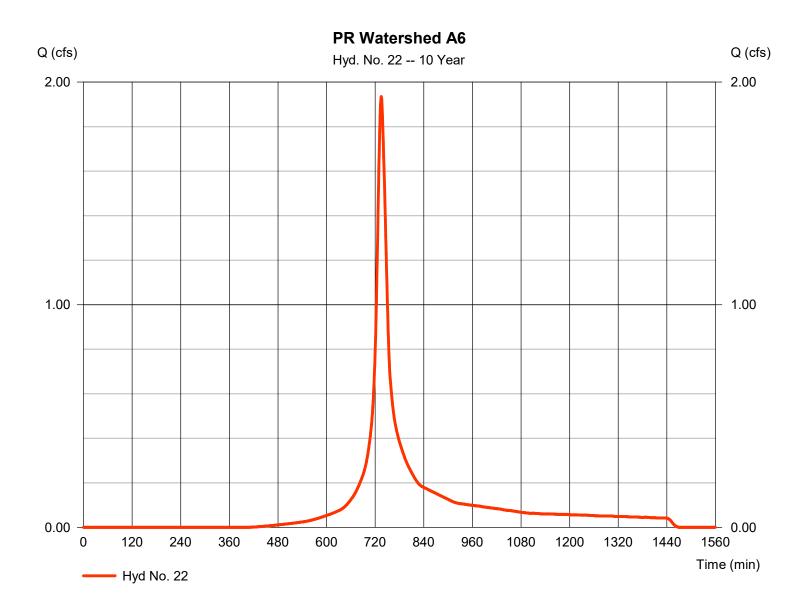

43

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 20

PR Watershed A5

Hydrograph type	= Combine	Peak discharge	= 4.297 cfs
Storm frequency	= 10 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 17,285 cuft
Inflow hyds.	= 18, 19	Contrib. drain. area	= 1.000 ac
Inflow hyds.	= 18, 19	Contrib. drain. area	= 1.000 ac

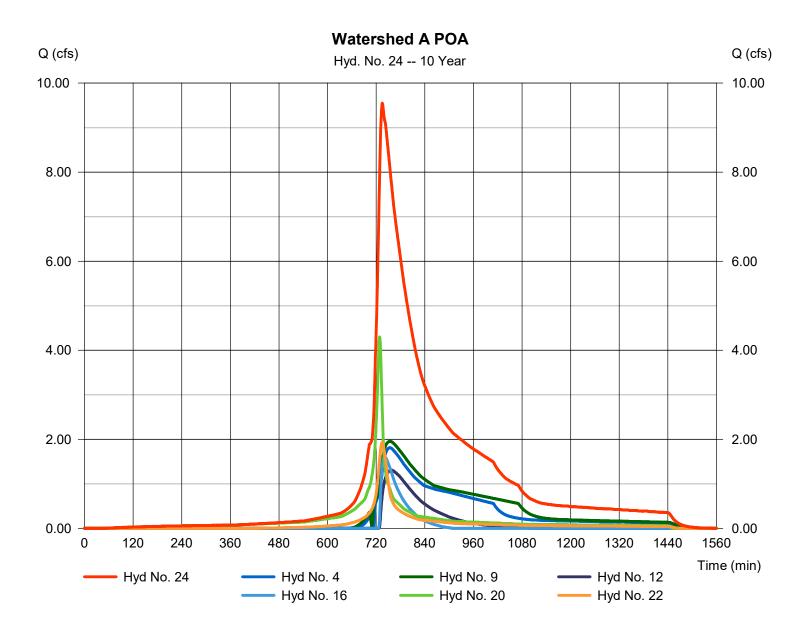


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 22

PR Watershed A6

Hydrograph type	= SCS Runoff	Peak discharge	= 1.935 cfs
Storm frequency	= 10 yrs	Time to peak	= 735 min
Time interval	= 1 min	Hyd. volume	= 8,892 cuft
Drainage area	= 0.810 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 5.15 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ \$00365e1factoP rojectD)at a_484 cipline\Site Civil\Storn

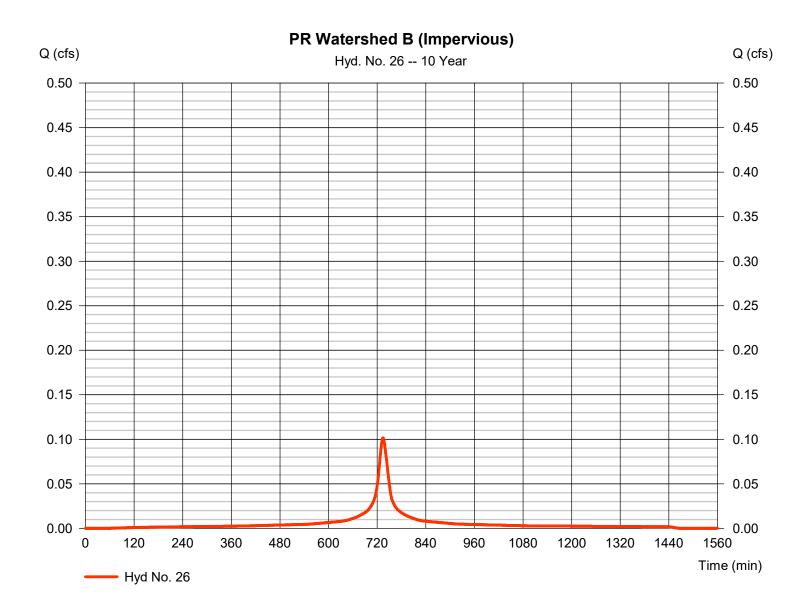


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 24

Watershed A POA

Hydrograph type	= Combine	Peak discharge	= 9.548 cfs
Storm frequency	= 10 yrs	Time to peak	= 735 min
Time interval	= 1 min	Hyd. volume	= 90,007 cuft
Inflow hyds.	= 4, 9, 12, 16, 20, 22	Contrib. drain. area	= 0.810 ac



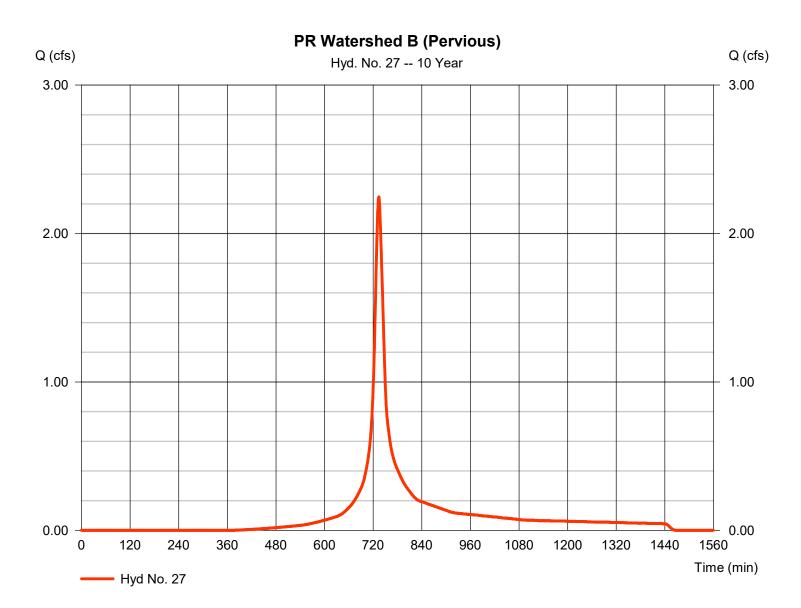
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 26

PR Watershed B (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.102 cfs
Storm frequency	= 10 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 535 cuft
Drainage area	= 0.030 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 5.15 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 800365e1620ctoP roject D	Dat a_484 cipline\Site Civil\Storr

47

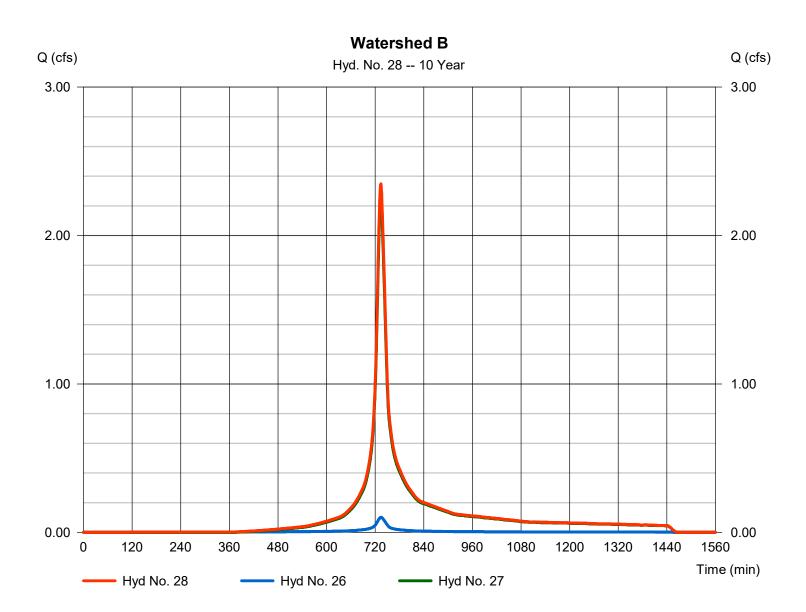

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 27

PR Watershed B (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 2.247 cfs
Storm frequency	= 10 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 9,918 cuft
Drainage area	= 0.860 ac	Curve number	= 82*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.00 min
Total precip.	= 5.15 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\80086661620ctoProjectD)at a∖_43st cipline∖Site Civil∖Storr

* Composite (Area/CN) = [(0.700 x 80) + (0.020 x 77) + (0.140 x 91)] / 0.860



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

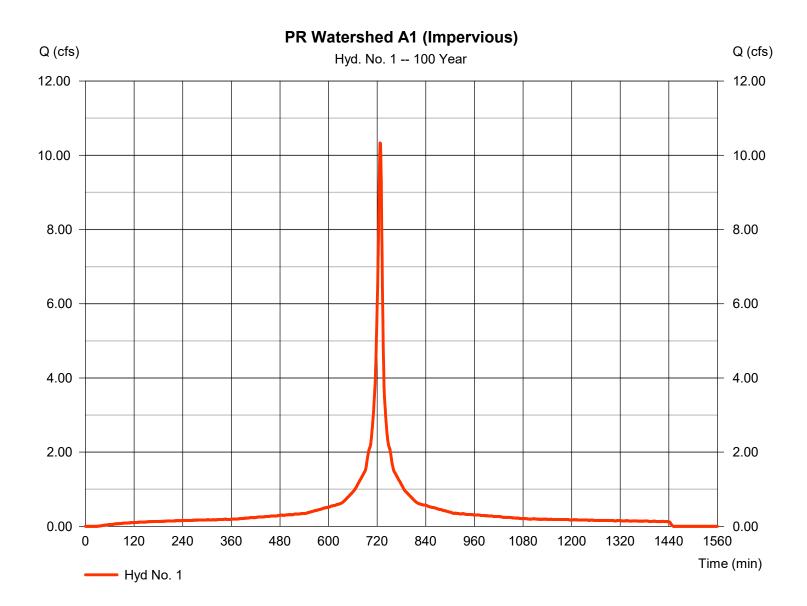
Hyd. No. 28

Watershed B

Hydrograph type	= Combine	Peak discharge	= 2.348 cfs
Storm frequency	= 10 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 10,453 cuft
Inflow hyds.	= 26, 27	Contrib. drain. area	= 0.890 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

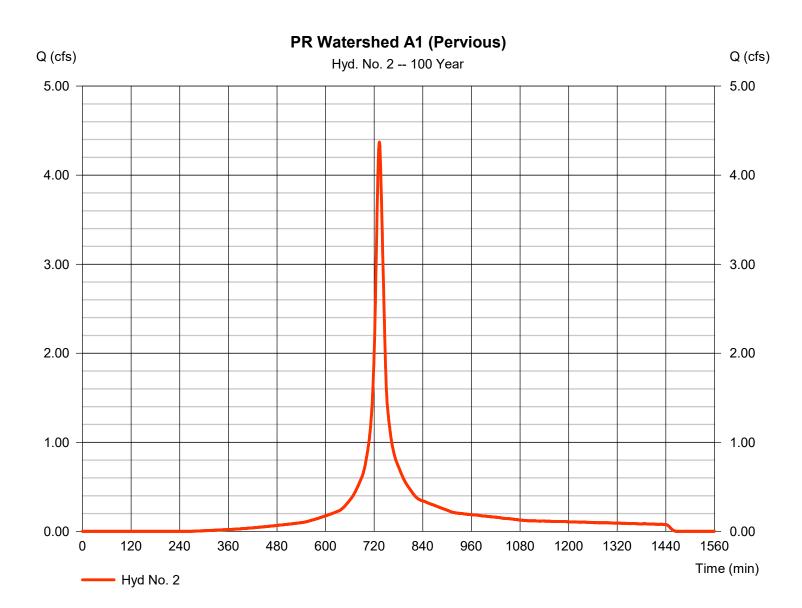

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	10.33	1	727	40,176				PR Watershed A1 (Impervious)
2	SCS Runoff	4.371	1	733	19,102				PR Watershed A1 (Pervious)
3	Combine	14.11	1	728	59,279	1, 2			Watershed A1
4	Reservoir	6.245	1	741	49,992	3	50.43	24,198	Basin A1
6	SCS Runoff	15.03	1	727	58,438				PR Watershed A2 (Impervious)
7	SCS Runoff	2.608	1	732	10,918				PR Watershed A2 (Pervious)
8	Combine	17.36	1	728	69,356	6, 7			Watershed A2
9	Reservoir	6.531	1	739	57,795	8	50.48	30,708	Basin A2
11	SCS Runoff	17.22	1	727	66,961				PR Watershed A3 (Impervious)
12	Reservoir	6.349	1	736	31,887	11	50.81	25,407	UG Basin A3
14	SCS Runoff	12.29	1	727	47,785				PR Watershed A4 (Impervious)
15	Combine	12.29	1	727	47,785	14			Watershed A4
16	Reservoir	7.716	1	732	19,361	15	52.87	13,251	UG Basin A4
18	SCS Runoff	6.971	1	728	28,720				PR Watershed A5 (Impervious)
19	SCS Runoff	0.518	1	729	1,863				PR Watershed A5 (pervious)
20	Combine	7.488	1	728	30,583	18, 19			PR Watershed A5
22	SCS Runoff	4.012	1	735	18,867				PR Watershed A6
24	Combine	35.26	1	733	208,485	4, 9, 12, 16, 20, 22,			Watershed A POA
26	SCS Runoff	0.175	1	734	937				PR Watershed B (Impervious)
27	SCS Runoff	4.524	1	734	20,557				PR Watershed B (Pervious)
28	Combine	4.699	1	734	21,493	26, 27			Watershed B
Pro	posed Hydro	graphs (Urrent P	recipitatio	on.offtxeturn F	Period: 100	Year	Friday, 05	/ 5 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

PR Watershed A1 (Impervious)

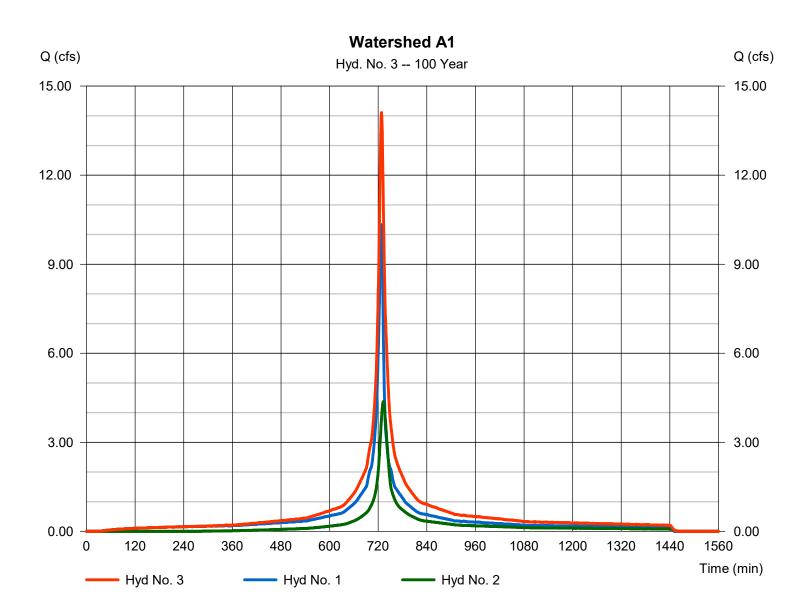
Hydrograph type	= SCS Runoff	Peak discharge	= 10.33 cfs
Storm frequency	= 100 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 40,176 cuft
Drainage area	= 1.320 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 8.84 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 1300465e1f20ctoP roject D	0at a∖_48e cipline∖Site Civil∖Storr


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

PR Watershed A1 (Pervious)

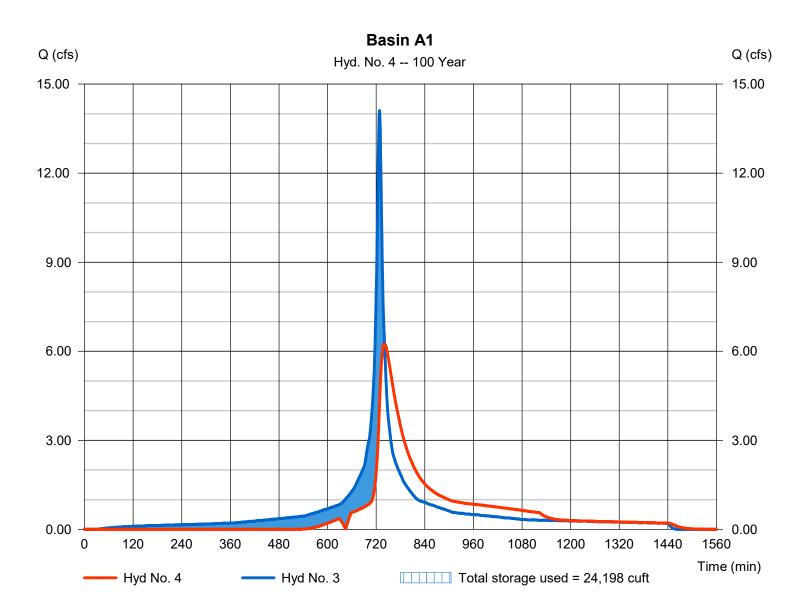
Hydrograph type	= SCS Runoff	Peak discharge	= 4.371 cfs
Storm frequency	= 100 yrs	Time to peak	= 733 min
Time interval	= 1 min	Hyd. volume	= 19,102 cuft
Drainage area	= 0.810 ac	Curve number	= 80*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 16.00 min
Total precip.	= 8.84 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300365eff20ctoP rojectD)at a∖_43st cipline∖Site Civil∖Storr


* Composite (Area/CN) = [(0.790 x 80) + (0.020 x 91)] / 0.810

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Watershed A1

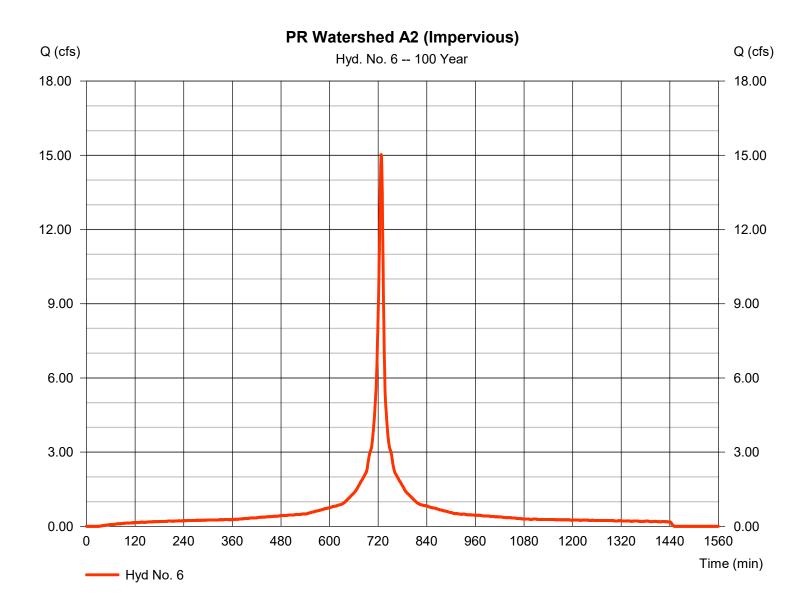

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

Basin A1

Hydrograph type	= Reservoir	Peak discharge	= 6.245 cfs
Storm frequency	= 100 yrs	Time to peak	= 741 min
Time interval	= 1 min	Hyd. volume	= 49,992 cuft
Inflow hyd. No.	= 3 - Watershed A1	Max. Elevation	= 50.43 ft
Reservoir name	= Basin A1	Max. Storage	= 24,198 cuft

Storage Indication method used.

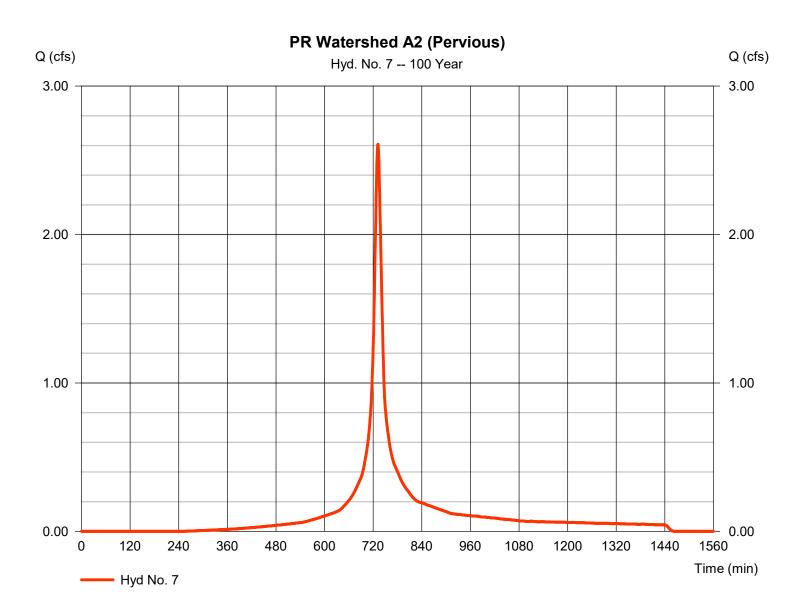


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

PR Watershed A2 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 15.03 cfs
Storm frequency	= 100 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 58,438 cuft
Drainage area	= 1.920 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 8.84 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 130245561120Ct&P roject D)at a∖_43st cipline∖Site Civil∖Storr

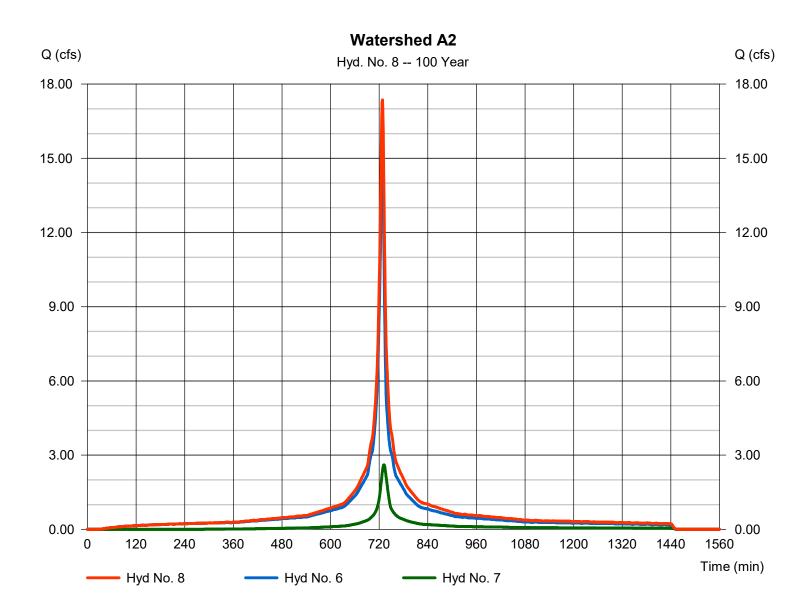

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

PR Watershed A2 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 2.608 cfs
Storm frequency	= 100 yrs	Time to peak	= 732 min
Time interval	= 1 min	Hyd. volume	= 10,918 cuft
Drainage area	= 0.460 ac	Curve number	= 81*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 14.00 min
Total precip.	= 8.84 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300366ffactoP rojectD	0at a_484 cipline\Site Civil\Storr

* Composite (Area/CN) = [(0.410 x 80) + (0.050 x 91)] / 0.460

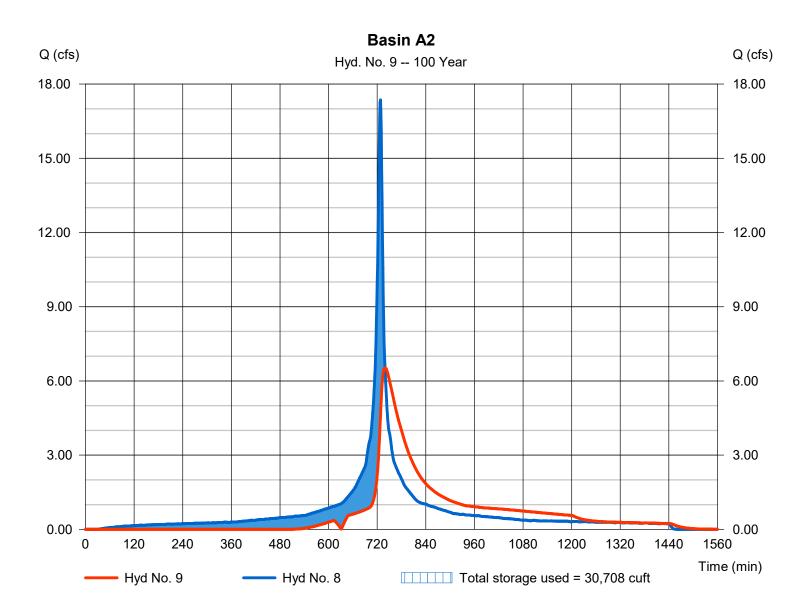


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Watershed A2

Hydrograph type= CombineStorm frequency= 100 yrsTime interval= 1 minInflow hyds.= 6, 7	Peak discharge Time to peak Hyd. volume Contrib. drain. area	= 17.36 cfs = 728 min = 69,356 cuft = 2.380 ac
--	---	---

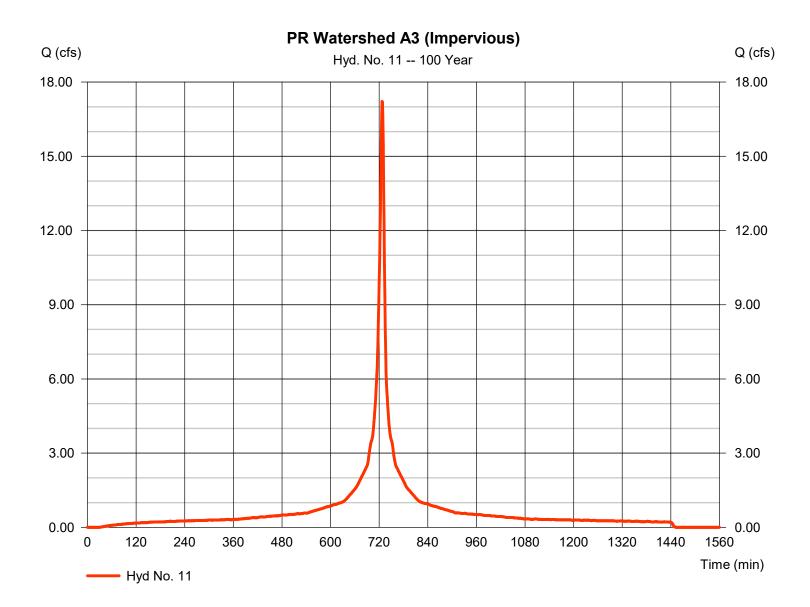

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Basin A2

Hydrograph type	= Reservoir	Peak discharge	= 6.531 cfs
Storm frequency	= 100 yrs	Time to peak	= 739 min
Time interval	= 1 min	Hyd. volume	= 57,795 cuft
Inflow hyd. No.	= 8 - Watershed A2	Max. Elevation	= 50.48 ft
Reservoir name	= Basin A2	Max. Storage	= 30,708 cuft

Storage Indication method used.

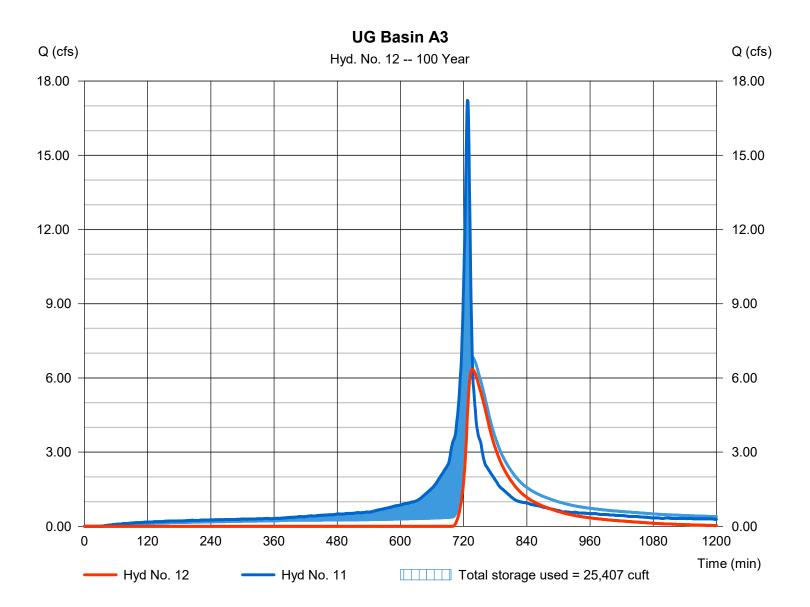


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

PR Watershed A3 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 17.22 cfs
Storm frequency	= 100 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 66,961 cuft
Drainage area	= 2.200 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 8.84 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 800365e1620ctoP rojectD)at a_434 cipline\Site Civil\Storr

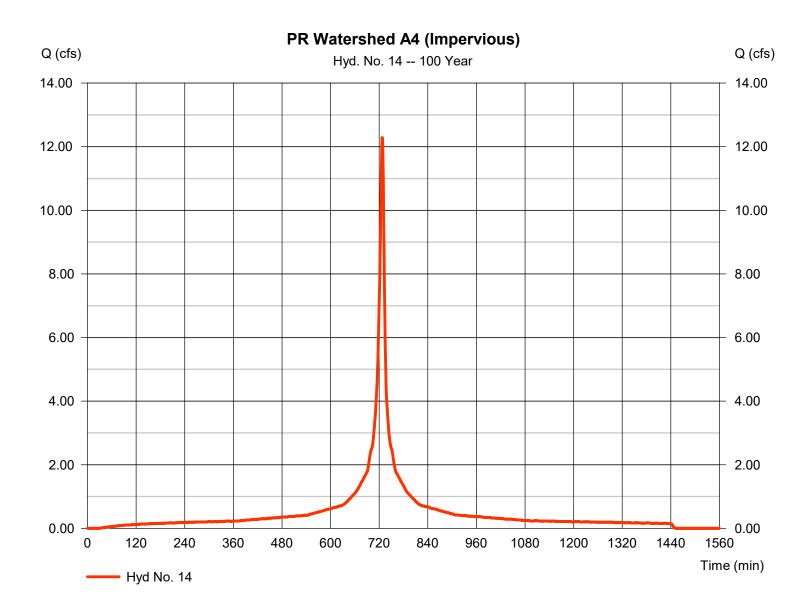

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 12

UG Basin A3

Hydrograph type Storm frequency Time interval Inflow hyd. No. Reservoir name	 Reservoir 100 yrs 1 min 11 - PR Watershed A3 (Impe UG Detention A3 		= 6.349 cfs = 736 min = 31,887 cuft = 50.81 ft = 25.407 cuft
Reservoir name	= UG Detention A3	Max. Storage	= 25,407 cuft
	00 Determon / to	Max. Otorage	20,407 001

Storage Indication method used. Exfiltration extracted from Outflow.

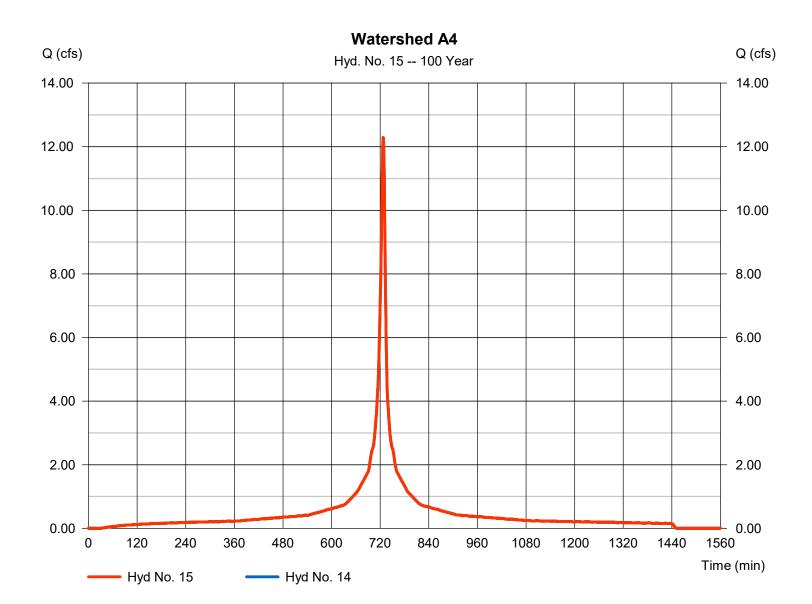


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 14

PR Watershed A4 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 12.29 cfs
Storm frequency	= 100 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 47,785 cuft
Drainage area	= 1.570 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 8.84 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ \$00365e1f20ctoP rojectD	0at a∖_48s4 cipline∖Site Civil∖Storr


61

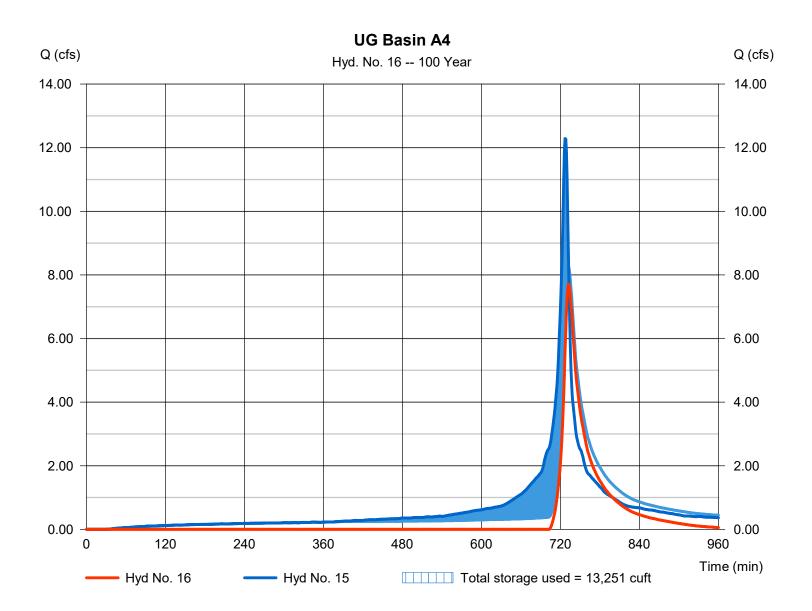
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 15

Watershed A4

Hydrograph type	= Combine	Peak discharge	= 12.29 cfs
Storm frequency	= 100 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 47,785 cuft
Inflow hyds.	= 14	Contrib. drain. area	= 1.570 ac

62

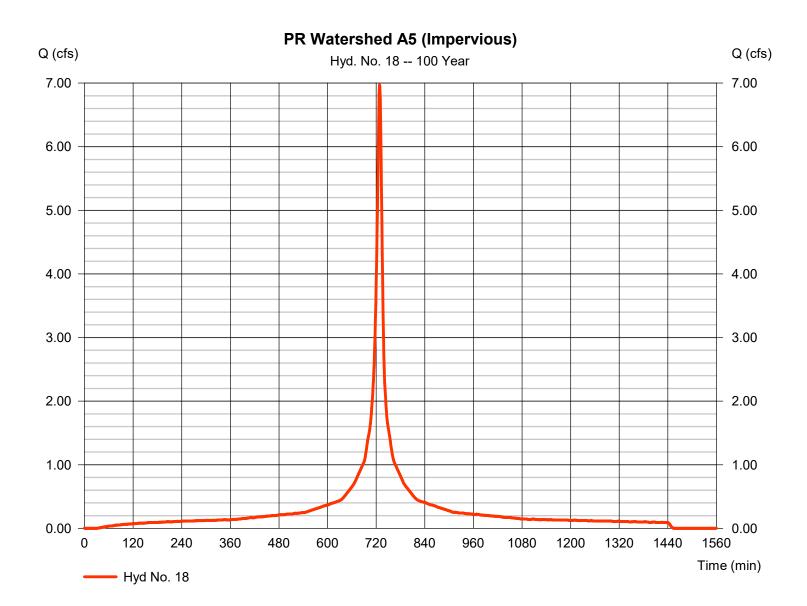

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 16

UG Basin A4

Hydrograph type	= Reservoir	Peak discharge	= 7.716 cfs
Storm frequency	= 100 yrs	Time to peak	= 732 min
Time interval	= 1 min	Hyd. volume	= 19,361 cuft
Inflow hyd. No.	= 15 - Watershed A4	Max. Elevation	= 52.87 ft
Reservoir name	= UG Detention A4	Max. Storage	= 13,251 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

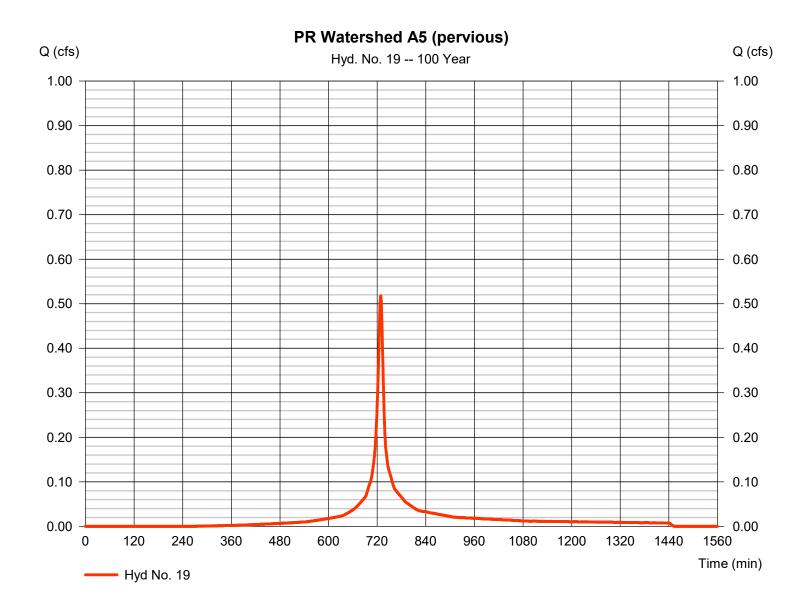


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 18

PR Watershed A5 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 6.971 cfs
Storm frequency	= 100 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 28,720 cuft
Drainage area	= 0.920 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 8.84 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 800365e1620ctoP rojectD	Dat a_484 cipline\Site Civil\Storn

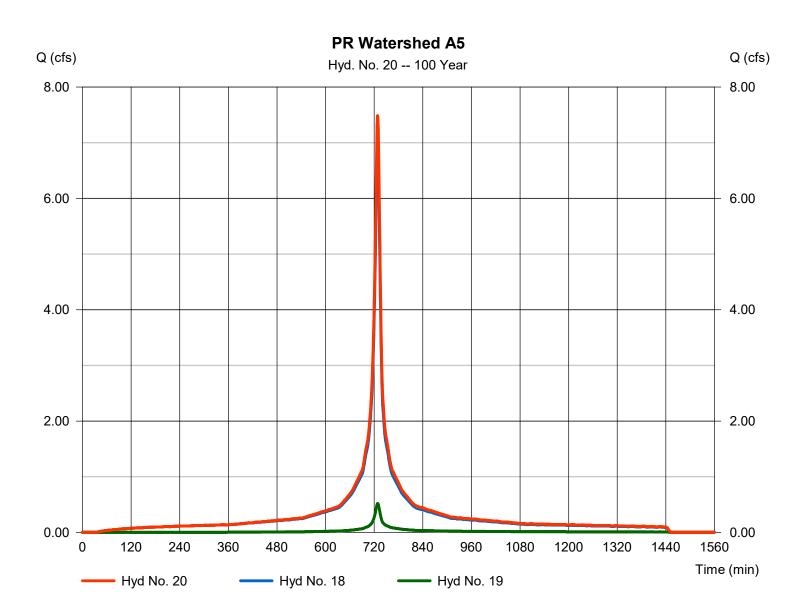


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 19

PR Watershed A5 (pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.518 cfs
Storm frequency	= 100 yrs	Time to peak	= 729 min
Time interval	= 1 min	Hyd. volume	= 1,863 cuft
Drainage area	= 0.080 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 8.84 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	AR\data0\ 800ap5e1fa0ctoP roject D	0at a∖_4384 cipline∖Site Civil∖Storr

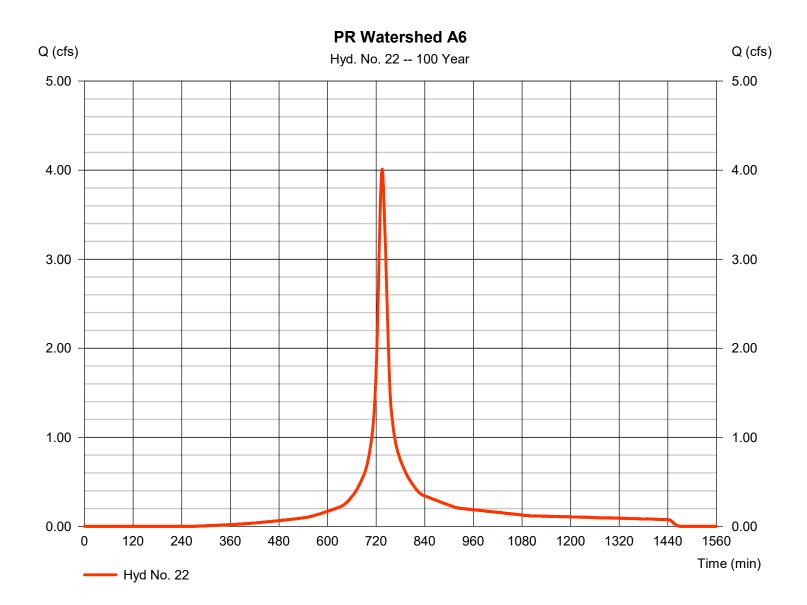

65

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 20

PR Watershed A5

Hydrograph type	= Combine	Peak discharge	= 7.488 cfs
Storm frequency	= 100 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 30,583 cuft
Inflow hyds.	= 18, 19	Contrib. drain. area	= 1.000 ac
Innow nyus.	- 10, 19	Contrib. drain. area	- 1.000 ac

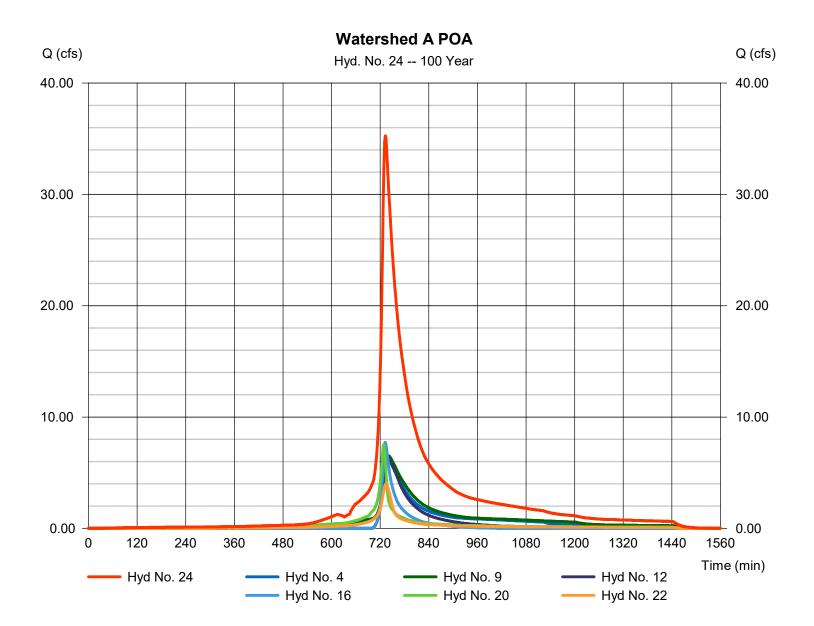


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 22

PR Watershed A6

Hydrograph type	= SCS Runoff	Peak discharge	= 4.012 cfs
Storm frequency	= 100 yrs	Time to peak	= 735 min
Time interval	= 1 min	Hyd. volume	= 18,867 cuft
Drainage area	= 0.810 ac	Curve number	= 80
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 8.84 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ \$00366ffactoP rojectD)ata_ 484 cipline\Site Civil\Storn

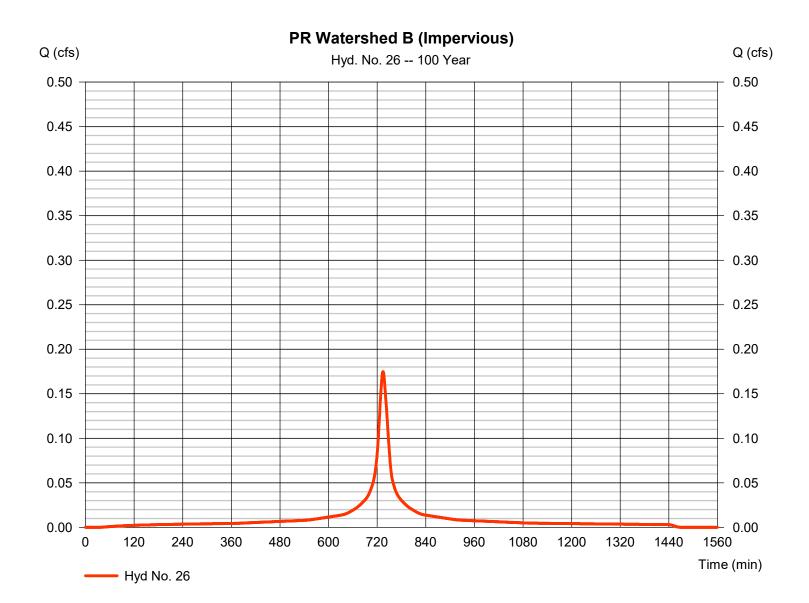


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 24

Watershed A POA

Hydrograph type	= Combine	Peak discharge	= 35.26 cfs
Storm frequency	= 100 yrs	Time to peak	= 733 min
Time interval	= 1 min	Hyd. volume	= 208,485 cuft
Inflow hyds.	= 4, 9, 12, 16, 20, 22	Contrib. drain. area	= 0.810 ac

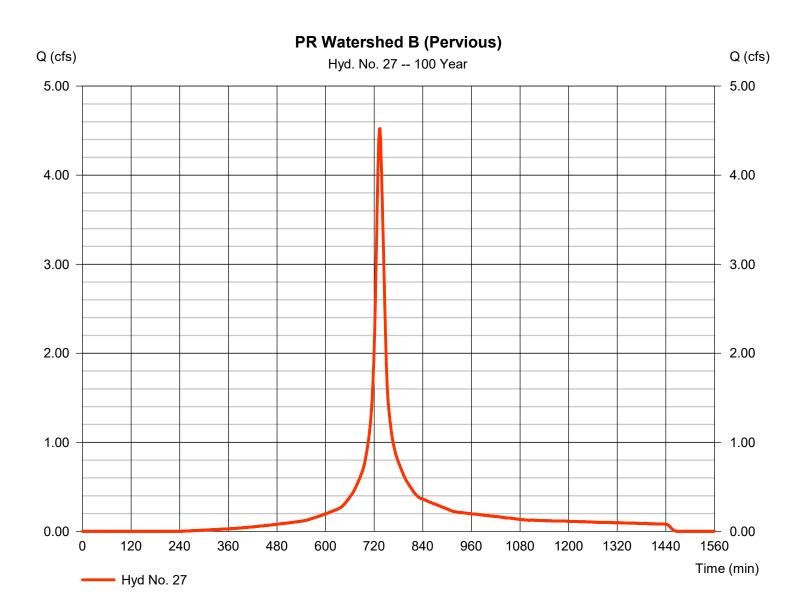


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 26

PR Watershed B (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.175 cfs
Storm frequency	= 100 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 937 cuft
Drainage area	= 0.030 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 8.84 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	AR\data0\800345e1620ctoProjectD	0at a∖_t28∉ cipline∖Site Civil∖Storr

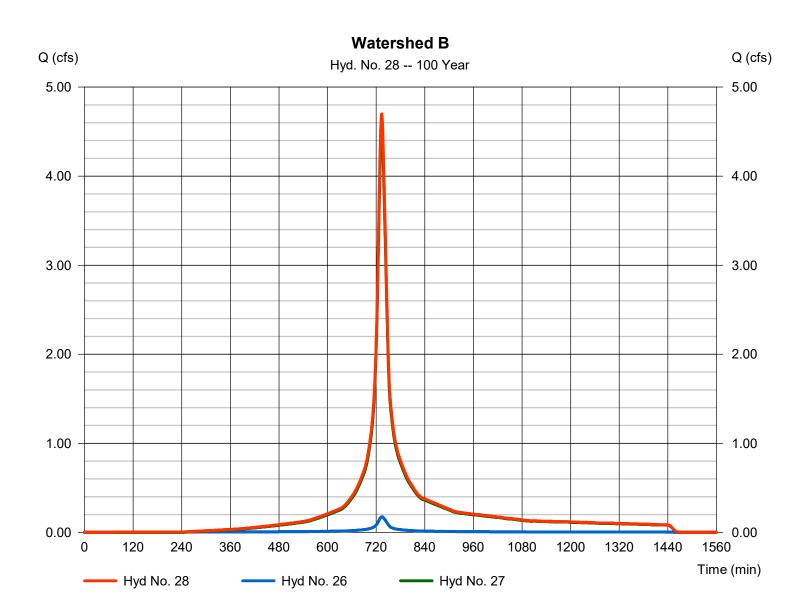

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 27

PR Watershed B (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 4.524 cfs
Storm frequency	= 100 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 20,557 cuft
Drainage area	= 0.860 ac	Curve number	= 82*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.00 min
Total precip.	= 8.84 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300366ffactoP rojectD)ata_ 484 cipline\Site Civil\Storn

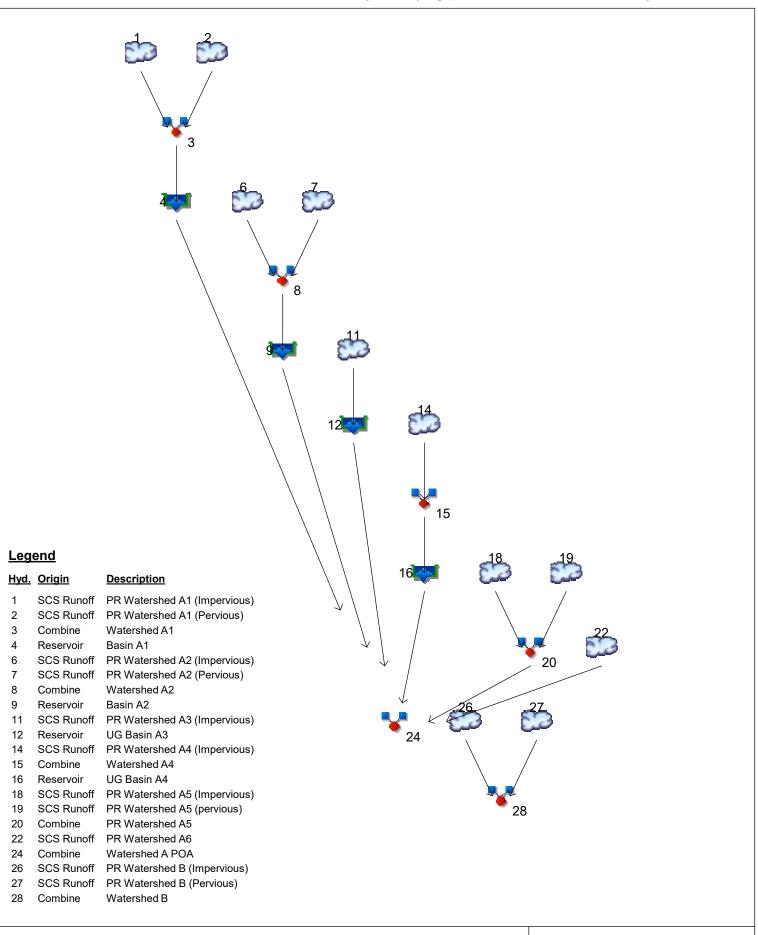
* Composite (Area/CN) = [(0.700 x 80) + (0.020 x 77) + (0.140 x 91)] / 0.860


70

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 28

Watershed B


Hydrograph type	= Combine	Peak discharge	= 4.699 cfs
Storm frequency	= 100 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 21,493 cuft
Inflow hyds.	= 26, 27	Contrib. drain. area	= 0.890 ac
-			

71

Watershed Model Schematic

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Project: Proposed Hydrographs_Future Precipitation.gpw

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Friday,	05	15	2023
i naay,	00	, 0,	2020

Watersheu Woder Schematic	Watershed Model Schematic	1
---------------------------	---------------------------	---

2 - Year

Summary Report	2
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, PR Watershed A1 (Impervious)	
Hydrograph No. 2, SCS Runoff, PR Watershed A1 (Pervious)	4
Hydrograph No. 3, Combine, Watershed A1	5
Hydrograph No. 4, Reservoir, Basin A1	6
Pond Report - Basin A1	
Hydrograph No. 6, SCS Runoff, PR Watershed A2 (Impervious)	
Hydrograph No. 7, SCS Runoff, PR Watershed A2 (Pervious)	
Hydrograph No. 8, Combine, Watershed A2	10
Hydrograph No. 9, Reservoir, Basin A2	11
Pond Report - Basin A2	
Hydrograph No. 11, SCS Runoff, PR Watershed A3 (Impervious)	13
Hydrograph No. 12, Reservoir, UG Basin A3	14
Pond Report - UG Detention A3	
Hydrograph No. 14, SCS Runoff, PR Watershed A4 (Impervious)	
Hydrograph No. 15, Combine, Watershed A4	17
Hydrograph No. 16, Reservoir, UG Basin A4	
Pond Report - UG Detention A4	
Hydrograph No. 18, SCS Runoff, PR Watershed A5 (Impervious)	20
Hydrograph No. 19, SCS Runoff, PR Watershed A5 (pervious)	21
Hydrograph No. 20, Combine, PR Watershed A5	22
Hydrograph No. 22, SCS Runoff, PR Watershed A6	23
Hydrograph No. 24, Combine, Watershed A POA	
Hydrograph No. 26, SCS Runoff, PR Watershed B (Impervious)	25
Hydrograph No. 27, SCS Runoff, PR Watershed B (Pervious)	
Hydrograph No. 28, Combine, Watershed B	27

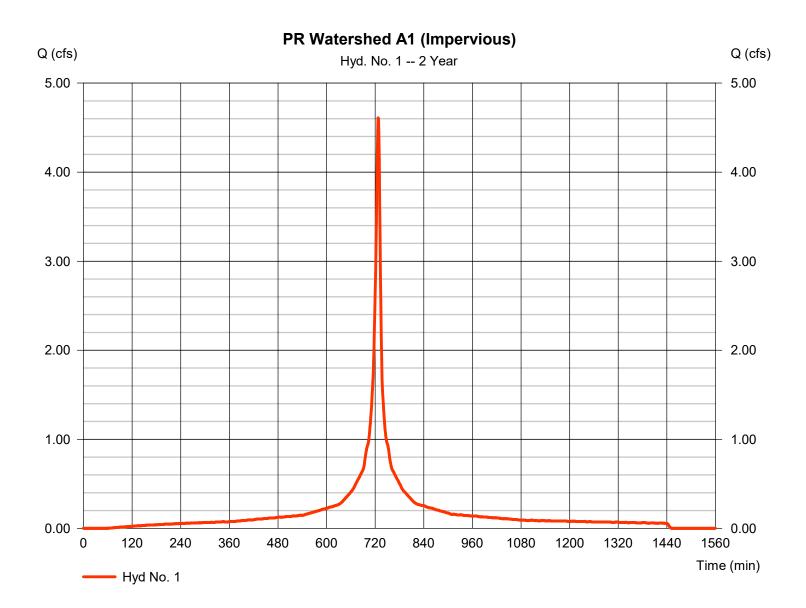
10 - Year

Summary Report	28
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, PR Watershed A1 (Impervious)	29
Hydrograph No. 2, SCS Runoff, PR Watershed A1 (Pervious)	30
Hydrograph No. 3, Combine, Watershed A1	31
Hydrograph No. 4, Reservoir, Basin A1	32
Hydrograph No. 6, SCS Runoff, PR Watershed A2 (Impervious)	33
Hydrograph No. 7, SCS Runoff, PR Watershed A2 (Pervious)	34
Hydrograph No. 8, Combine, Watershed A2	35
Hydrograph No. 9, Reservoir, Basin A2	36
Hydrograph No. 11, SCS Runoff, PR Watershed A3 (Impervious)	37
Hydrograph No. 12, Reservoir, UG Basin A3	38
Hydrograph No. 14, SCS Runoff, PR Watershed A4 (Impervious)	39
Hydrograph No. 15, Combine, Watershed A4	40
Hydrograph No. 16, Reservoir, UG Basin A4	41
Hydrograph No. 18, SCS Runoff, PR Watershed A5 (Impervious)	42

Hydrograph No. 19, SCS Runoff, PR Watershed A5 (pervious)	43
Hydrograph No. 20, Combine, PR Watershed A5	
Hydrograph No. 22, SCS Runoff, PR Watershed A6	
Hydrograph No. 24, Combine, Watershed A POA	46
Hydrograph No. 26, SCS Runoff, PR Watershed B (Impervious)	47
Hydrograph No. 27, SCS Runoff, PR Watershed B (Pervious)	48
Hydrograph No. 28, Combine, Watershed B	
100 - Year	
Summary Report	50
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, PR Watershed A1 (Impervious)	
Hydrograph No. 2, SCS Runoff, PR Watershed A1 (Pervious)	
Hydrograph No. 3, Combine, Watershed A1	
Hydrograph No. 4, Reservoir, Basin A1	
Hydrograph No. 6, SCS Runoff, PR Watershed A2 (Impervious)	
Hydrograph No. 7, SCS Runoff, PR Watershed A2 (Pervious)	
Hydrograph No. 8, Combine, Watershed A2	57
Hydrograph No. 9, Reservoir, Basin A2	58
Hydrograph No. 11, SCS Runoff, PR Watershed A3 (Impervious)	59
Hydrograph No. 12, Reservoir, UG Basin A3	
Hydrograph No. 14, SCS Runoff, PR Watershed A4 (Impervious)	
Hydrograph No. 15, Combine, Watershed A4	
Hydrograph No. 16, Reservoir, UG Basin A4	
Hydrograph No. 18, SCS Runoff, PR Watershed A5 (Impervious)	
Hydrograph No. 19, SCS Runoff, PR Watershed A5 (pervious)	65
Hydrograph No. 20, Combine, PR Watershed A5	
Hydrograph No. 22, SCS Runoff, PR Watershed A6	
Hydrograph No. 24, Combine, Watershed A POA	
Hydrograph No. 26, SCS Runoff, PR Watershed B (Impervious)	
Hydrograph No. 27, SCS Runoff, PR Watershed B (Pervious)	
Hydrograph No. 28, Combine, Watershed B	71

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

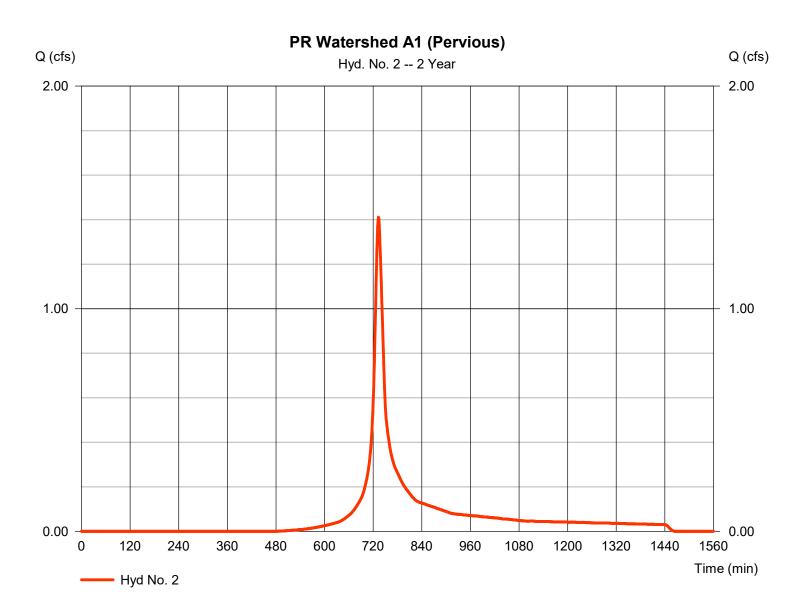

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description		
1	SCS Runoff	4.609	1	727	17,450				PR Watershed A1 (Impervious)		
2	SCS Runoff	1.411	1	733	6,004				PR Watershed A1 (Pervious)		
3	Combine	5.785	1	728	23,454	1, 2			Watershed A1		
4	Reservoir	0.856	1	773	14,168	3	49.07	13,228	Basin A1		
6	SCS Runoff	6.703	1	727	25,382				PR Watershed A2 (Impervious)		
7	SCS Runoff	0.902	1	732	3,653				PR Watershed A2 (Pervious)		
8	Combine	7.488	1	728	29,034	6, 7			Watershed A2		
9	Reservoir	0.917	1	778	17,473	8	49.15	17,284	Basin A2		
11	SCS Runoff	7.681	1	727	29,083				PR Watershed A3 (Impervious)		
12	Reservoir	0.306	1	798	2,264	11	50.10	13,755	UG Basin A3		
14	SCS Runoff	5.481	1	727	20,755				PR Watershed A4 (Impervious)		
15	Combine	5.481	1	727	20,755	14			Watershed A4		
16	Reservoir	0.393	1	761	1,571	15	52.12	7,729	UG Basin A4		
18	SCS Runoff	3.109	1	728	12,474				PR Watershed A5 (Impervious)		
19	SCS Runoff	0.168	1	729	586				PR Watershed A5 (pervious)		
20	Combine	3.276	1	728	13,060	18, 19			PR Watershed A5		
22	SCS Runoff	1.292	1	735	5,930				PR Watershed A6		
24	Combine	5.592	1	730	54,466	4, 9, 12, 16, 20, 22,			Watershed A POA		
26	SCS Runoff	0.078	1	734	407				PR Watershed B (Impervious)		
27	SCS Runoff	1.531	1	734	6,720				PR Watershed B (Pervious)		
28	Combine	1.609	1	734	7,127	26, 27			Watershed B		
Pro	Proposed Hydrographs_Future Precipitation.g p return Period: 2 Year							Friday, 05	Friday, 05 / 5 / 2023		

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

PR Watershed A1 (Impervious)

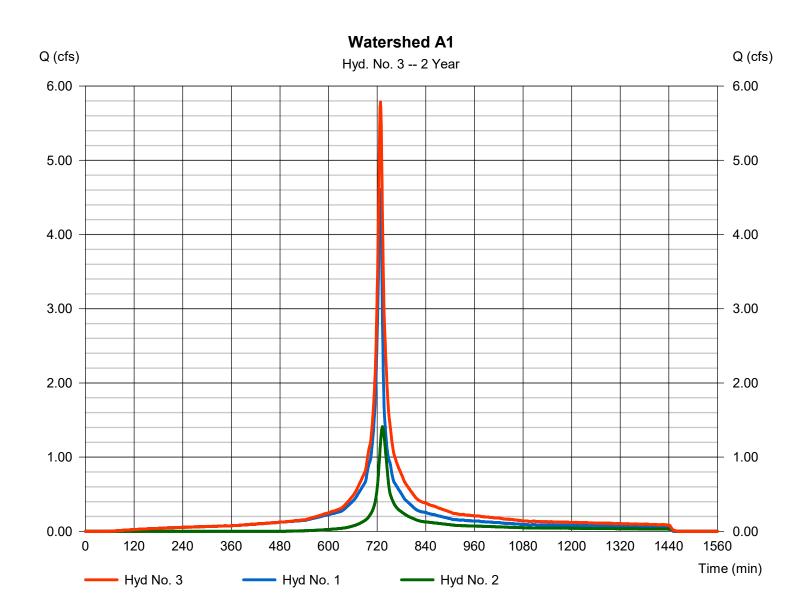
Hydrograph type	= SCS Runoff	Peak discharge	= 4.609 cfs
Storm frequency	= 2 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 17,450 cuft
Drainage area	= 1.320 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 3.97 in	Distribution	= Custom
Storm duration	= \\langan.com\data\F	PAR\data0\ 300356162ctoP roject D	0at a_4384 cipline\Site Civil\Storr


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

PR Watershed A1 (Pervious)

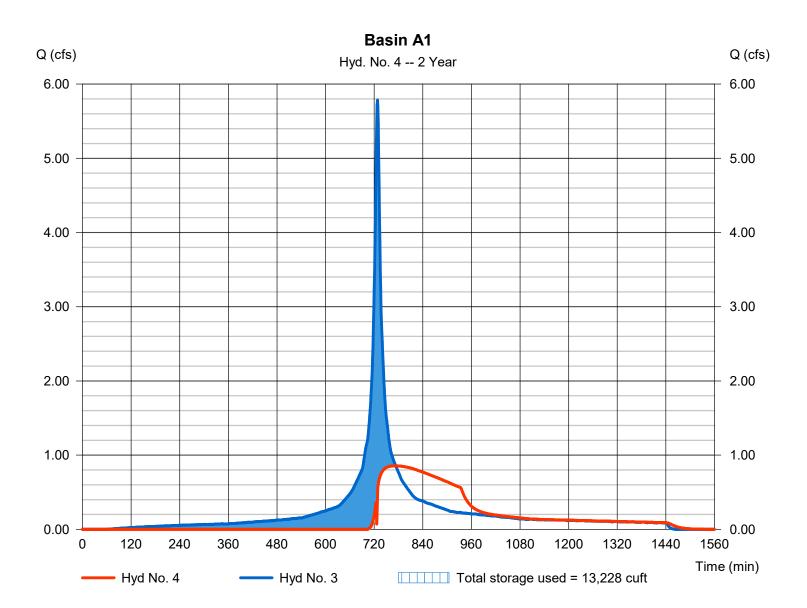
Hydrograph type	= SCS Runoff	Peak discharge	= 1.411 cfs
Storm frequency	= 2 yrs	Time to peak	= 733 min
Time interval	= 1 min	Hyd. volume	= 6,004 cuft
Drainage area	= 0.810 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 16.00 min
Total precip.	= 3.97 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300365eff20ctoP rojectD	Data_ 484 cipline\Site Civil\Storm


* Composite (Area/CN) = [(0.790 x 80) + (0.020 x 91)] / 0.810

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Watershed A1


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

Basin A1

Hydrograph type	= Reservoir	Peak discharge	= 0.856 cfs
Storm frequency	= 2 yrs	Time to peak	= 773 min
Time interval	= 1 min	Hyd. volume	= 14,168 cuft
Inflow hyd. No.	= 3 - Watershed A1	Max. Elevation	= 49.07 ft
Reservoir name	= Basin A1	Max. Storage	= 13,228 cuft

Storage Indication method used.

Pond Report

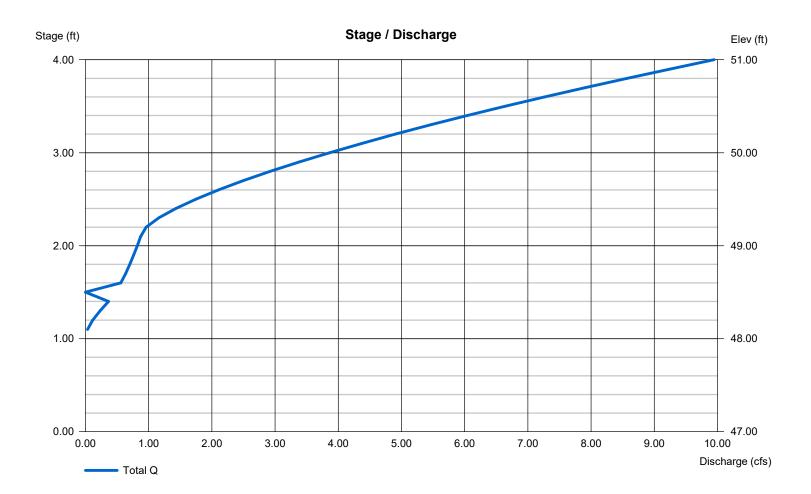
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 1 - Basin A1

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 47.00 ft

Stage / Storage Table

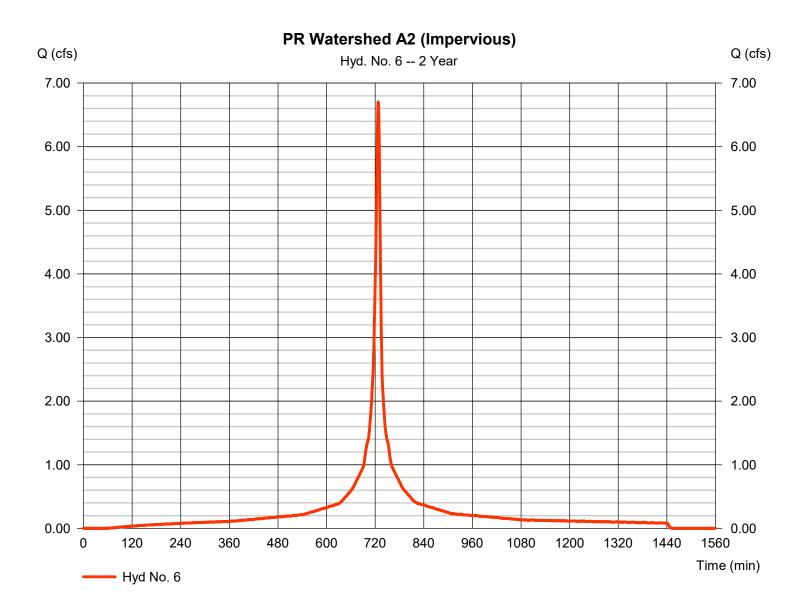

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	47.00	5,443	0	0
1.00	48.00	6,344	5,887	5,887
2.00	49.00	7,260	6,796	12,683
3.00	50.00	8,216	7,732	20,416
4.00	51.00	9,219	8,712	29,127

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	6.00	0.00	0.00	Crest Len (ft)	= 1.00	Inactive	0.00	0.00
Span (in)	= 24.00	6.00	0.00	0.00	Crest El. (ft)	= 49.15	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 43.81	48.00	0.00	0.00	Weir Type	= Rect			
Length (ft)	= 5.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 2.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

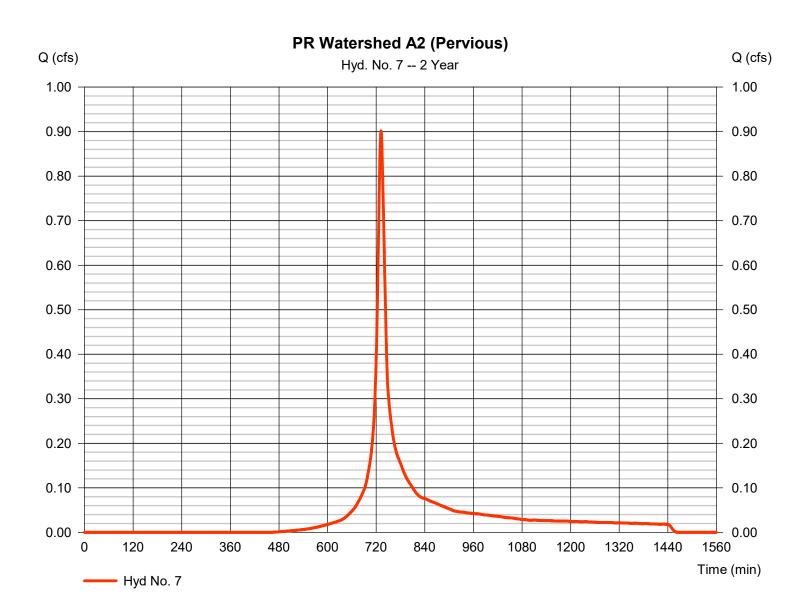


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

PR Watershed A2 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 6.703 cfs
Storm frequency	= 2 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 25,382 cuft
Drainage area	= 1.920 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 3.97 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	PAR\data0\800245e1620ctoProject)at a_484 cipline\Site Civil\Storr

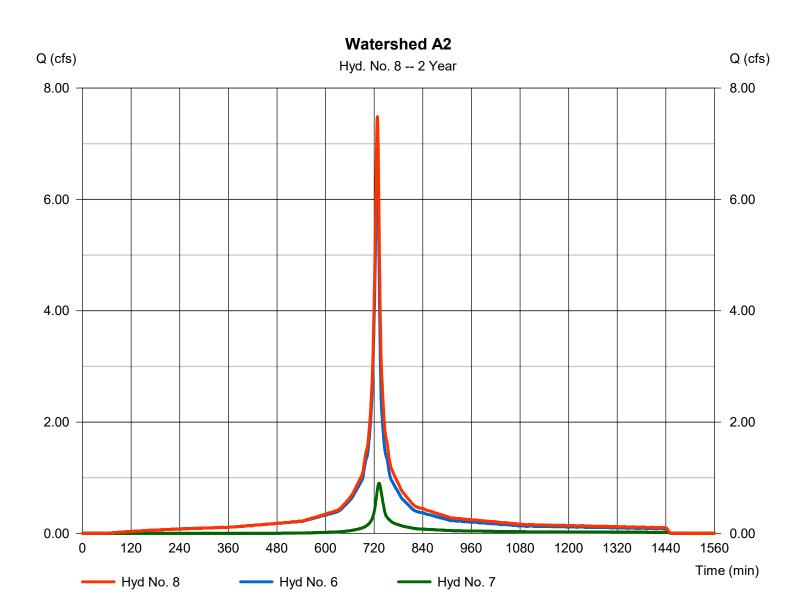

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

PR Watershed A2 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.902 cfs
Storm frequency	= 2 yrs	Time to peak	= 732 min
Time interval	= 1 min	Hyd. volume	= 3,653 cuft
Drainage area	= 0.480 ac	Curve number	= 81*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 14.00 min
Total precip.	= 3.97 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	PAR\data0\1800465e1120c1&Project D)at a_484 cipline\Site Civil\Storr

* Composite (Area/CN) = [(0.390 x 80) + (0.050 x 91)] / 0.480

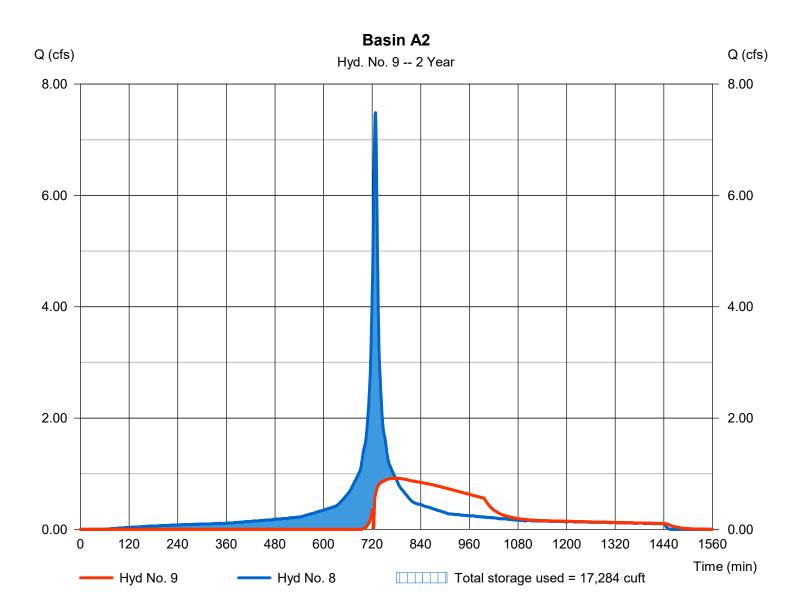

9

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Watershed A2

Hydrograph type	= Combine	Peak discharge	= 7.488 cfs
Storm frequency	= 2 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 29,034 cuft
Inflow hyds.	= 6, 7	Contrib. drain. area	= 2.400 ac


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Basin A2

Hydrograph type	= Reservoir	Peak discharge	= 0.917 cfs
Storm frequency	= 2 yrs	Time to peak	= 778 min
Time interval	= 1 min	Hyd. volume	= 17,473 cuft
Inflow hyd. No.	= 8 - Watershed A2	Max. Elevation	= 49.15 ft
Reservoir name	= Basin A2	Max. Storage	= 17,284 cuft
Reservoir name	= Basin A2	Max. Storage	= 17,284 cuft

Storage Indication method used.

Pond Report

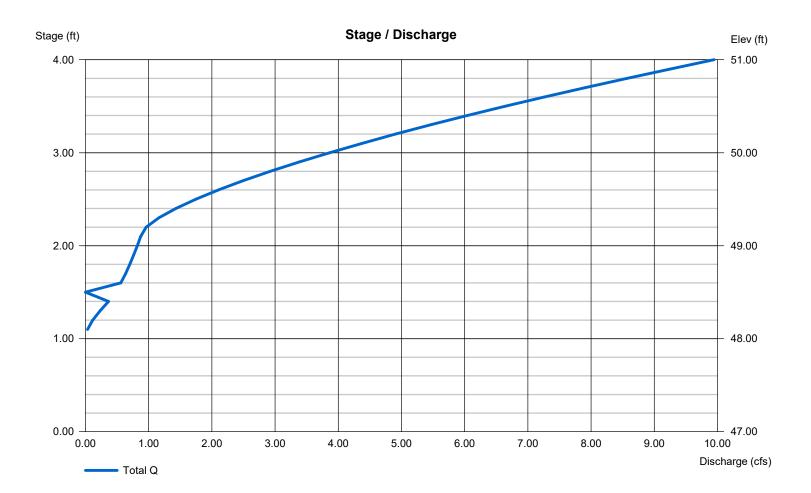
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 5 - Basin A2

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 47.00 ft

Stage / Storage Table

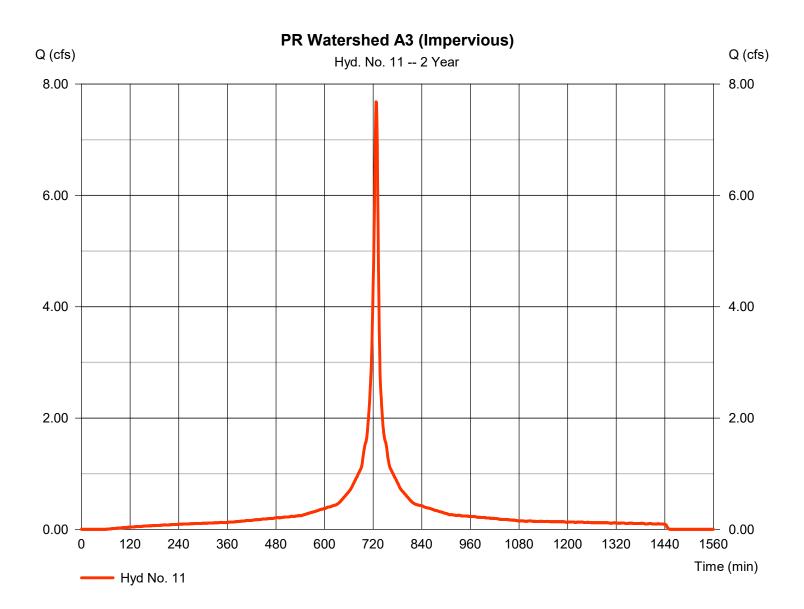

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	47.00	6,733	0	0
1.00	48.00	7,912	7,314	7,314
2.00	49.00	9,088	8,492	15,806
3.00	50.00	10,268	9,671	25,477
4.00	51.00	11,468	10,861	36,339

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	6.00	0.00	0.00	Crest Len (ft)	= 1.00	0.00	0.00	0.00
Span (in)	= 24.00	6.00	0.00	0.00	Crest El. (ft)	= 49.15	0.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 43.83	48.00	0.00	0.00	Weir Type	= Rect			
Length (ft)	= 20.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 2.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	(Contour)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

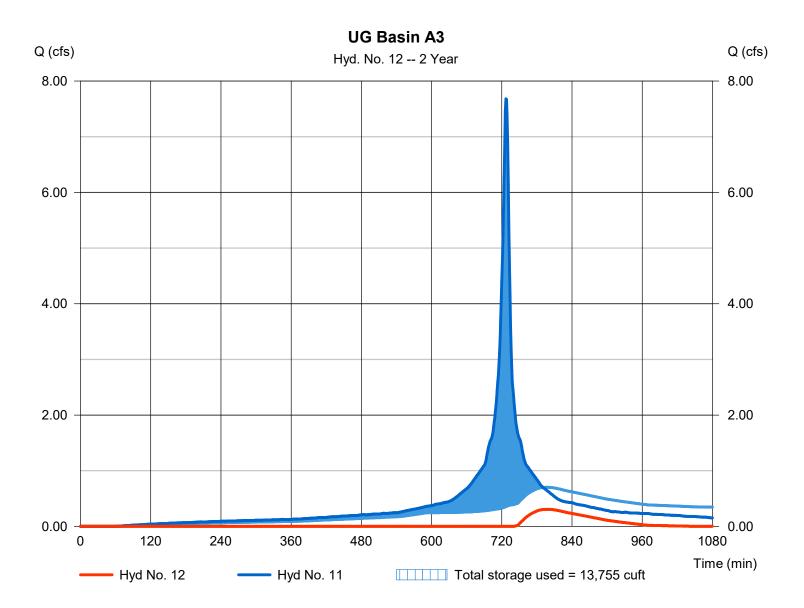


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

PR Watershed A3 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 7.681 cfs
Storm frequency	= 2 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 29,083 cuft
Drainage area	= 2.200 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 3.97 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	PAR\data0\180024561120ctoProject D)at <mark>a∖_484</mark> cipline∖Site Civil∖Storr


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 12

UG Basin A3

Hydrograph type Storm frequency Time interval Inflow hyd. No. Reservoir name	 Reservoir 2 yrs 1 min 11 - PR Watershed A3 (Impe UG Detention A3 	,	 = 0.306 cfs = 798 min = 2,264 cuft = 50.10 ft = 13,755 cuft
Reservoir name	= UG Detention A3	Max. Storage	= 13,755 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

14

Pond Report

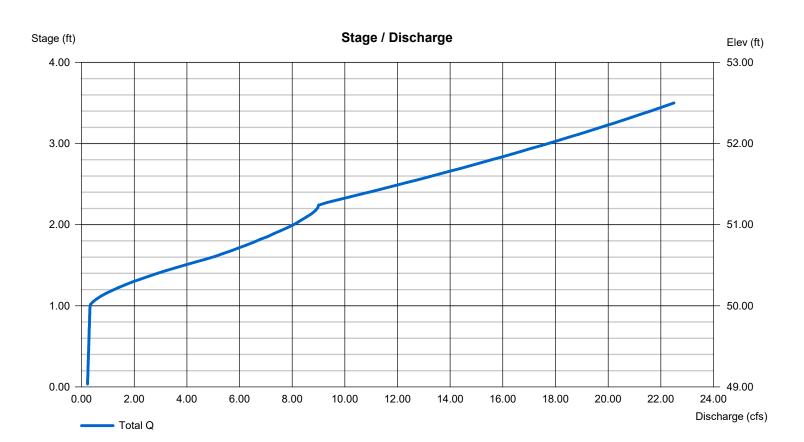
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 4 - UG Detention A3

Pond Data

UG Chambers -Invert elev. = 49.50 ft, Rise x Span = 2.50×4.25 ft, Barrel Len = 7.12 ft, No. Barrels = 235, Slope = 0.00%, Headers = Yes **Encasement -**Invert elev. = 49.00 ft, Width = 4.67 ft, Height = 3.50 ft, Voids = 40.00%

Stage / Storage Table

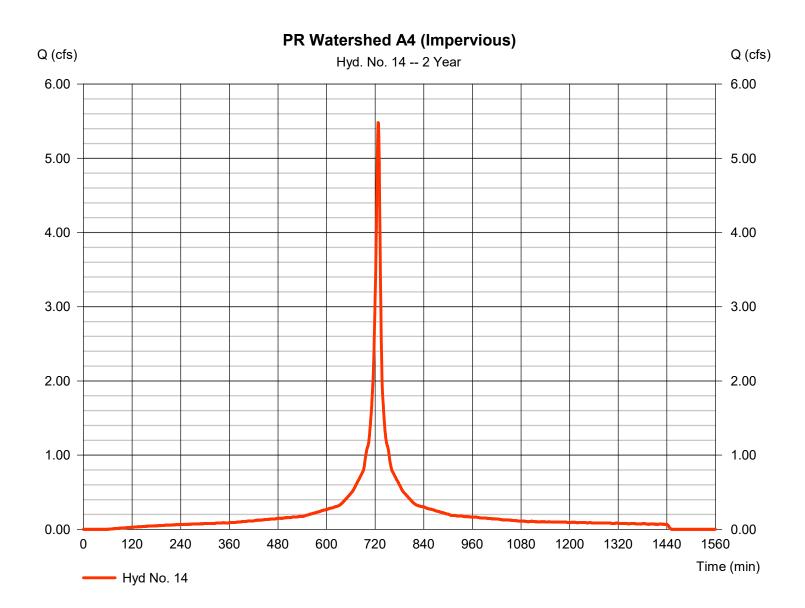

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	49.00	n/a	0	0
0.35	49.35	n/a	2,529	2,529
0.70	49.70	n/a	4,500	7,029
1.05	50.05	n/a	5,940	12,969
1.40	50.40	n/a	5,830	18,799
1.75	50.75	n/a	5,642	24,442
2.10	51.10	n/a	5,361	29,802
2.45	51.45	n/a	4,952	34,755
2.80	51.80	n/a	4,328	39,083
3.15	52.15	n/a	3,049	42,132
3.50	52.50	n/a	2,529	44,661

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	0.00	0.00	0.00	Crest Len (ft)	= 3.00	0.00	0.00	0.00
Span (in)	= 24.00	0.00	0.00	0.00	Crest El. (ft)	= 50.00	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 49.00	0.00	0.00	0.00	Weir Type	= Rect			
Length (ft)	= 20.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 1.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.750 (by	vWet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Weir Structures

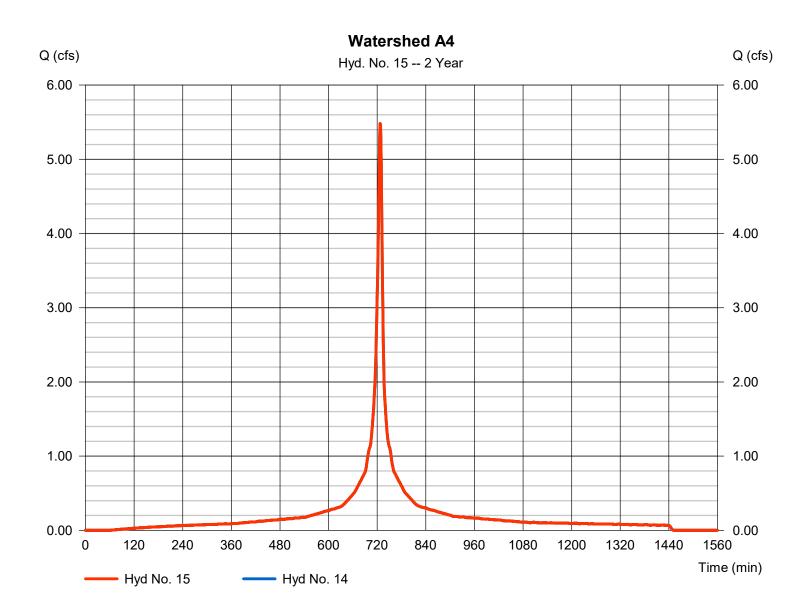
Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 14

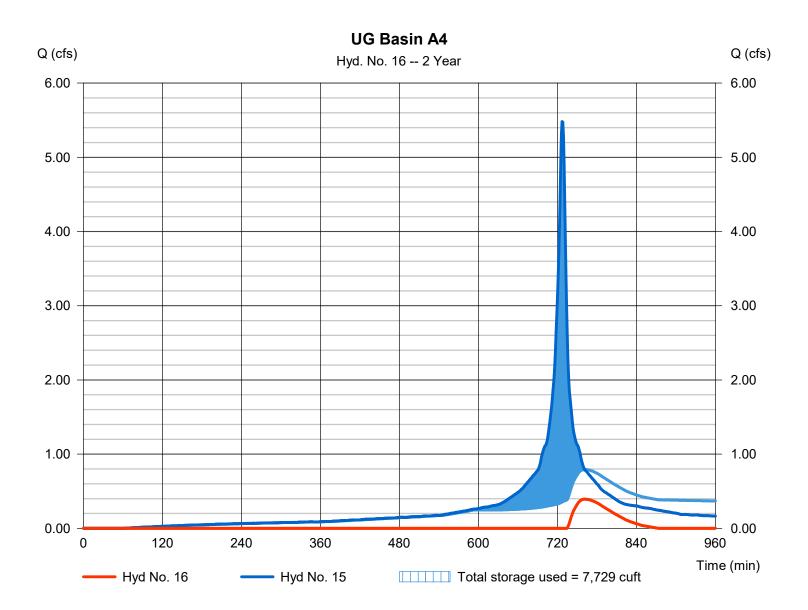
PR Watershed A4 (Impervious)


Hydrograph type	= SCS Runoff	Peak discharge	= 5.481 cfs
Storm frequency	= 2 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 20,755 cuft
Drainage area	= 1.570 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 3.97 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	PAR\data0\80044561640CtoProjectD)at a_434 cipline\Site Civil\Storr

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 15

Watershed A4


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 16

UG Basin A4

Hydrograph type	= Reservoir	Peak discharge	= 0.393 cfs
Storm frequency	= 2 yrs	Time to peak	= 761 min
Time interval	= 1 min	Hyd. volume	= 1,571 cuft
Inflow hyd. No.	= 15 - Watershed A4	Max. Elevation	= 52.12 ft
Reservoir name	= UG Detention A4	Max. Storage	= 7,729 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

Pond Report

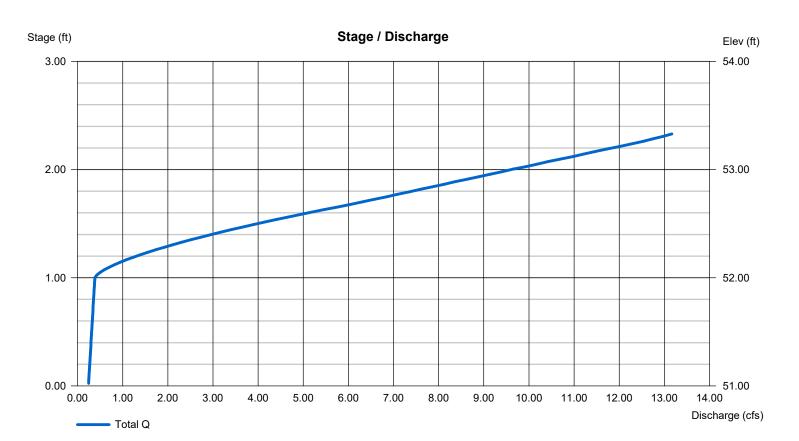
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 3 - UG Detention A4

Pond Data

UG Chambers -Invert elev. = 51.50 ft, Rise x Span = 1.33×2.83 ft, Barrel Len = 7.12 ft, No. Barrels = 429, Slope = 0.00%, Headers = No **Encasement -**Invert elev. = 51.00 ft, Width = 3.42 ft, Height = 2.33 ft, Voids = 40.00%

Stage / Storage Table

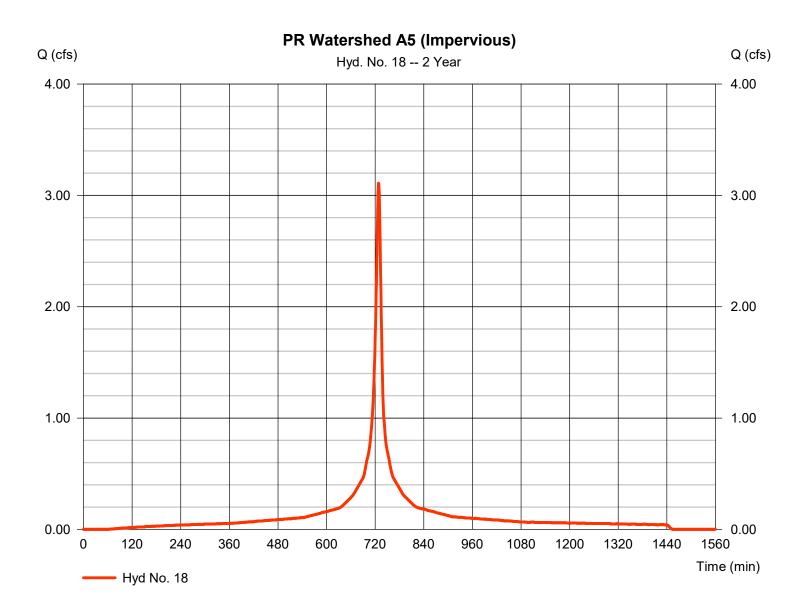

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	51.00	n/a	0	0
0.23	51.23	n/a	974	974
0.47	51.47	n/a	974	1,948
0.70	51.70	n/a	2,002	3,950
0.93	51.93	n/a	2,146	6,096
1.17	52.17	n/a	2,073	8,169
1.40	52.40	n/a	1,949	10,118
1.63	52.63	n/a	1,750	11,867
1.86	52.86	n/a	1,342	13,209
2.10	53.10	n/a	974	14,183
2.33	53.33	n/a	974	15,157

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	0.00	0.00	0.00	Crest Len (ft)	= 3.00	0.00	0.00	0.00
Span (in)	= 24.00	0.00	0.00	0.00	Crest El. (ft)	= 52.00	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 51.00	0.00	0.00	0.00	Weir Type	= Rect			
Length (ft)	= 20.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 2.50	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 1.000 (by	/Wet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Weir Structures

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

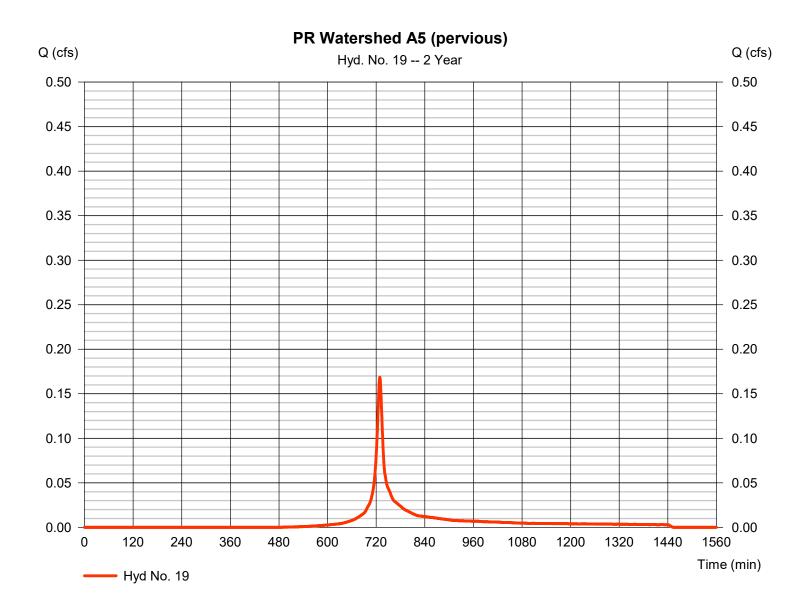


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 18

PR Watershed A5 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 3.109 cfs
Storm frequency	= 2 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 12,474 cuft
Drainage area	= 0.920 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 3.97 in	Distribution	= Custom
Storm duration	= \\langan.com\data\F	PAR\data0\ 300205e1020ctoP rojectD	Dat a_434 cipline\Site Civil\Storr

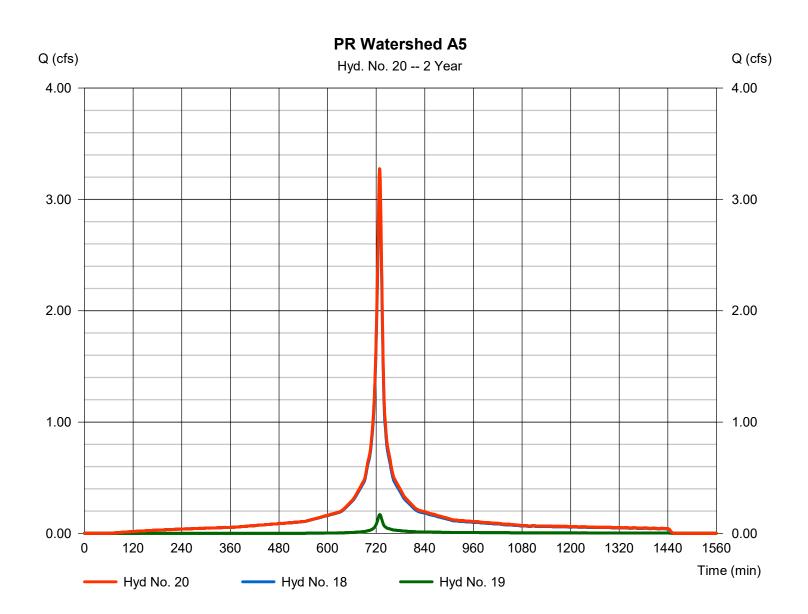

20

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 19

PR Watershed A5 (pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.168 cfs
Storm frequency	= 2 yrs	Time to peak	= 729 min
Time interval	= 1 min	Hyd. volume	= 586 cuft
Drainage area	= 0.080 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 3.97 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	AR\data0\ 800356160ctoP roject D	0at a∖_t284 cipline∖Site Civil∖Storr

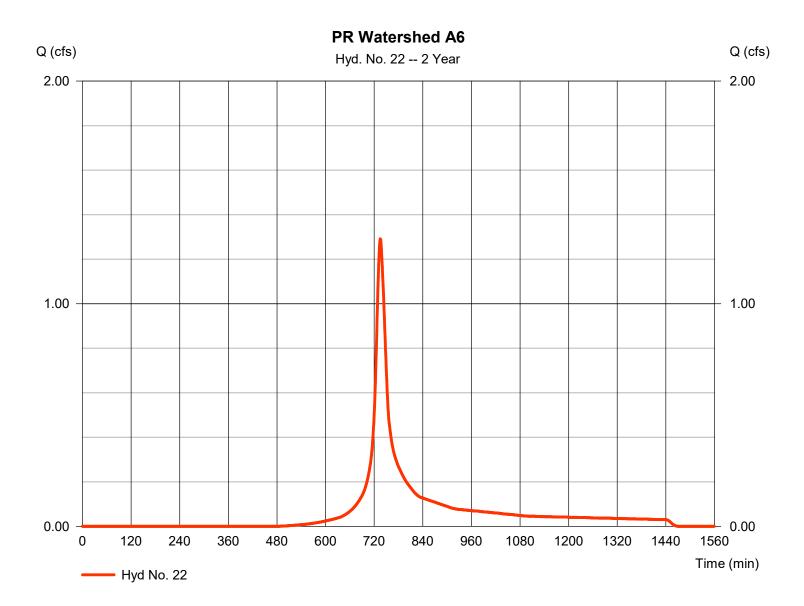


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 20

PR Watershed A5

Hydrograph type	= Combine	Peak discharge	= 3.276 cfs
Storm frequency	= 2 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 13,060 cuft
Inflow hyds.	= 18, 19	Contrib. drain. area	= 1.000 ac

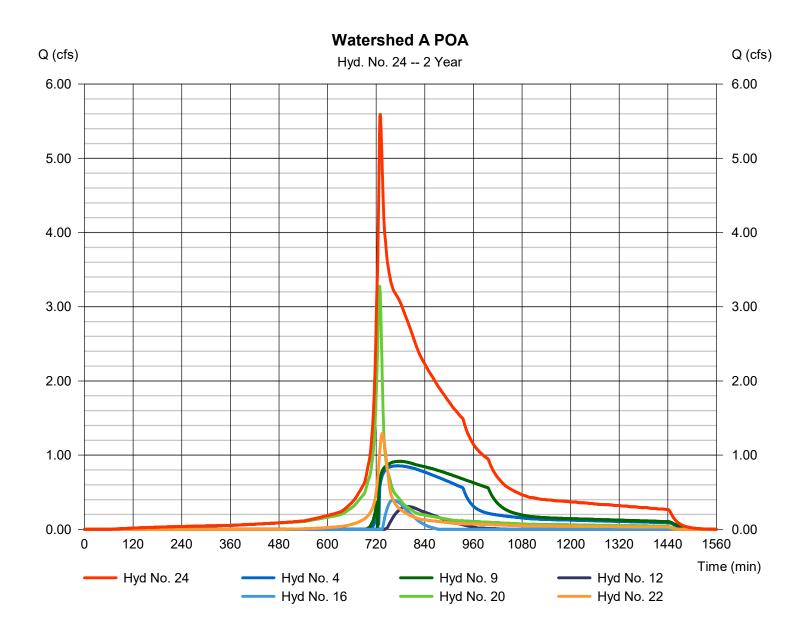

22

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 22

PR Watershed A6

Hydrograph type	= SCS Runoff	Peak discharge	= 1.292 cfs
Storm frequency	= 2 yrs	Time to peak	= 735 min
Time interval	= 1 min	Hyd. volume	= 5,930 cuft
Drainage area	= 0.810 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 3.97 in	Distribution	= Custom
Storm duration	= \\langan.com\data\F	PAR\data0\ 800365e1620ctoP rojectD	Dat a_4384 cipline\Site Civil\Storr

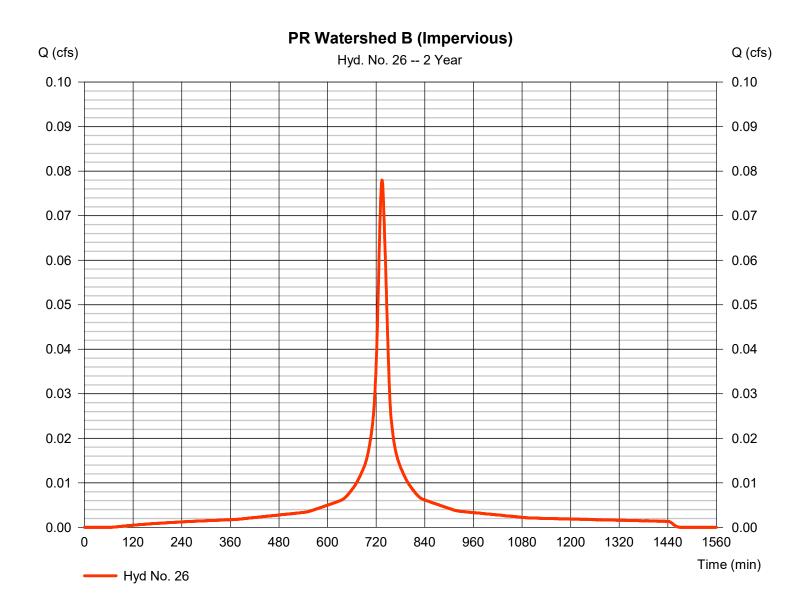


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 24

Watershed A POA

Hydrograph type	= Combine	Peak discharge	= 5.592 cfs
Storm frequency Time interval	= 2 yrs = 1 min	Time to peak Hyd. volume	= 730 min = 54,466 cuft
Inflow hyds.	= 4, 9, 12, 16, 20, 22	Contrib. drain. area	= 0.810 ac



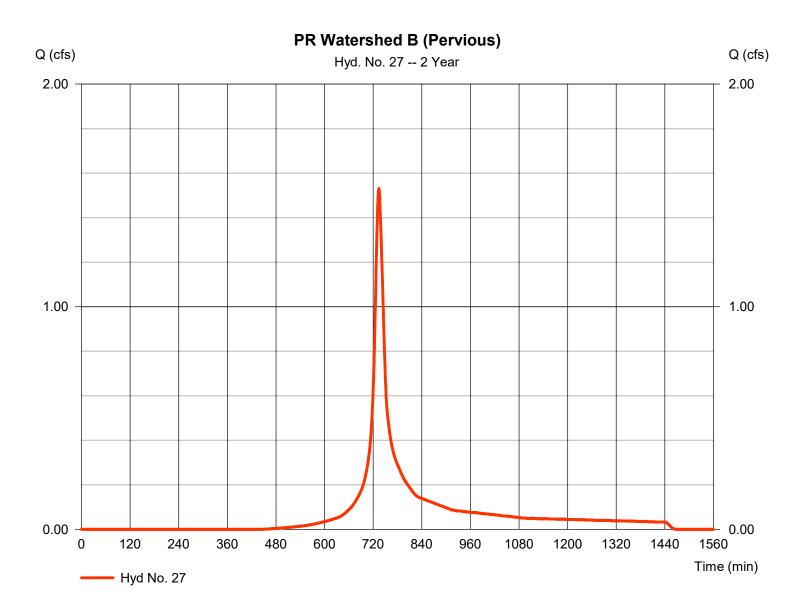
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 26

PR Watershed B (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.078 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 407 cuft
Drainage area	= 0.030 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 3.97 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300365eff20ctoP rojectD	Data_ 484 cipline\Site Civil\Storm

25

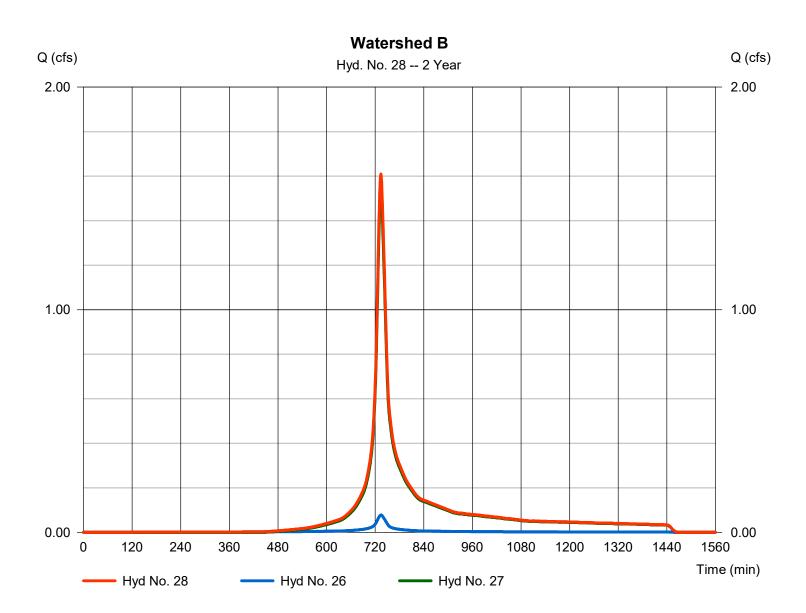

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 27

PR Watershed B (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.531 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 6,720 cuft
Drainage area	= 0.860 ac	Curve number	= 82*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.00 min
Total precip.	= 3.97 in	Distribution	= Custom
Storm duration	= \\langan.com\data\F	PAR\data0\ 800245e1f20ctoP roject D)at a∖_48st cipline\Site Civil\Storr

* Composite (Area/CN) = [(0.700 x 80) + (0.020 x 77) + (0.140 x 91)] / 0.860



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

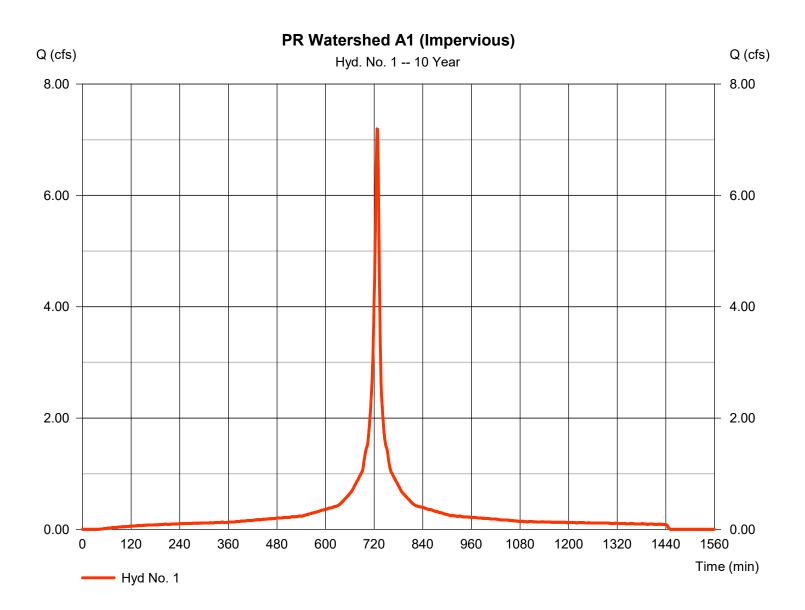
Hyd. No. 28

Watershed B

Hydrograph type	 Combine 2 yrs 1 min 26, 27 	Peak discharge	= 1.609 cfs
Storm frequency		Time to peak	= 734 min
Time interval		Hyd. volume	= 7,127 cuft
Inflow hyds.		Contrib. drain. area	= 0.890 ac
Inflow hyds.	= 26, 27	Contrib. drain. area	= 0.890 ac

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

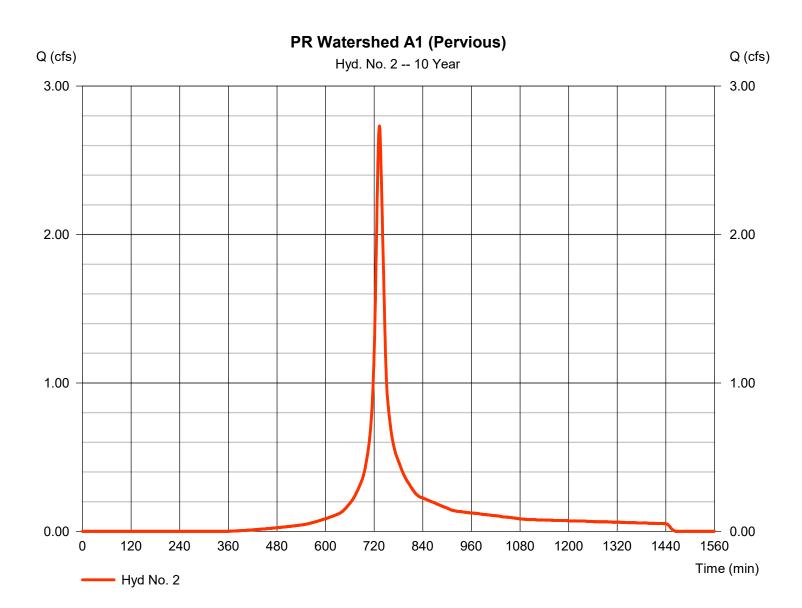

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	7.198	1	727	27,712				PR Watershed A1 (Impervious)
2	SCS Runoff	2.731	1	733	11,715				PR Watershed A1 (Pervious)
3	Combine	9.527	1	728	39,426	1, 2			Watershed A1
4	Reservoir	3.013	1	746	30,140	3	49.82	19,024	Basin A1
6	SCS Runoff	10.47	1	727	40,308				PR Watershed A2 (Impervious)
7	SCS Runoff	1.716	1	732	7,038				PR Watershed A2 (Pervious)
8	Combine	11.99	1	728	47,345	6, 7			Watershed A2
9	Reservoir	3.221	1	745	35,784	8	49.87	24,178	Basin A2
11	SCS Runoff	12.00	1	727	46,186				PR Watershed A3 (Impervious)
12	Reservoir	2.586	1	744	14,745	11	50.41	18,897	UG Basin A3
14	SCS Runoff	8.561	1	727	32,960				PR Watershed A4 (Impervious)
15	Combine	8.561	1	727	32,960	14			Watershed A4
16	Reservoir	3.164	1	736	9,021	15	52.46	10,618	UG Basin A4
18	SCS Runoff	4.856	1	728	19,809				PR Watershed A5 (Impervious)
19	SCS Runoff	0.324	1	729	1,143				PR Watershed A5 (pervious)
20	Combine	5.179	1	728	20,952	18, 19			PR Watershed A5
22	SCS Runoff	2.505	1	735	11,570				PR Watershed A6
24	Combine	16.50	1	735	122,212	4, 9, 12, 16, 20, 22,			Watershed A POA
26	SCS Runoff	0.122	1	734	646				PR Watershed B (Impervious)
27	SCS Runoff	2.874	1	734	12,789				PR Watershed B (Pervious)
28	Combine	2.996	1	734	13,435	26, 27			Watershed B
Dro	nosed Hydro	araphs F	uture Pre		n.gpRveturn F	Period: 10 Y	í ear	Friday, 05	/ 5 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

PR Watershed A1 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 7.198 cfs
Storm frequency	= 10 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 27,712 cuft
Drainage area	= 1.320 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ \$00365e1f20ctoP rojectD	0at a∖_48e cipline∖Site Civil∖Storr

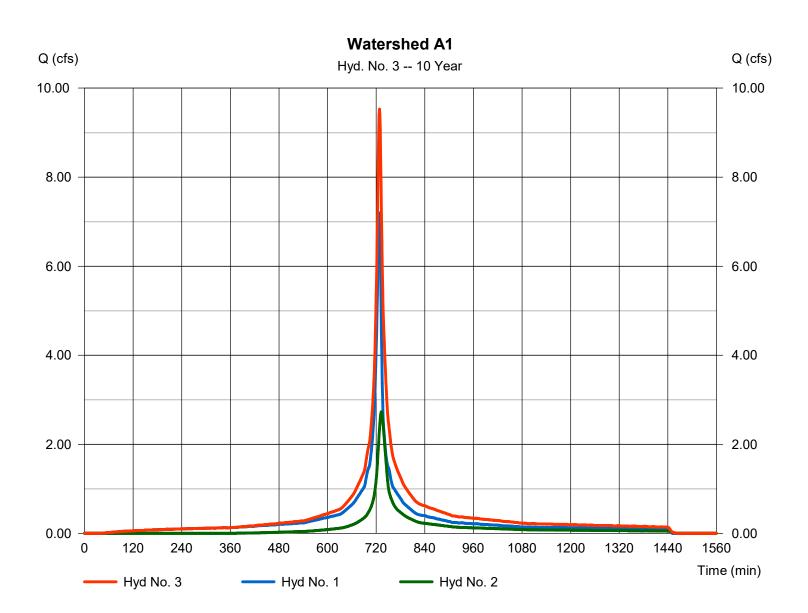

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

PR Watershed A1 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 2.731 cfs
Storm frequency	= 10 yrs	Time to peak	= 733 min
Time interval	= 1 min	Hyd. volume	= 11,715 cuft
Drainage area	= 0.810 ac	Curve number	= 80*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 16.00 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ \$00366ff20ctoP rojectD)at a∖_484 cipline\Site Civil\Storr

* Composite (Area/CN) = [(0.790 x 80) + (0.020 x 91)] / 0.810

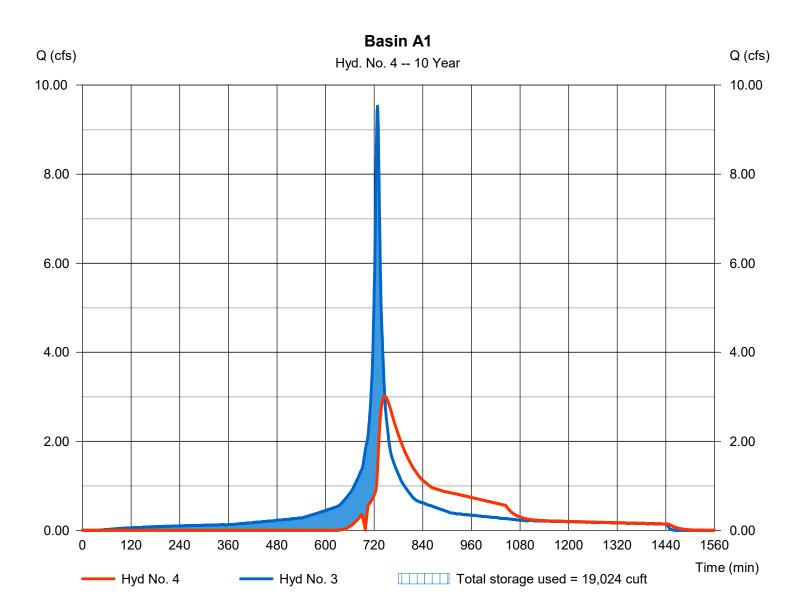


30

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Watershed A1

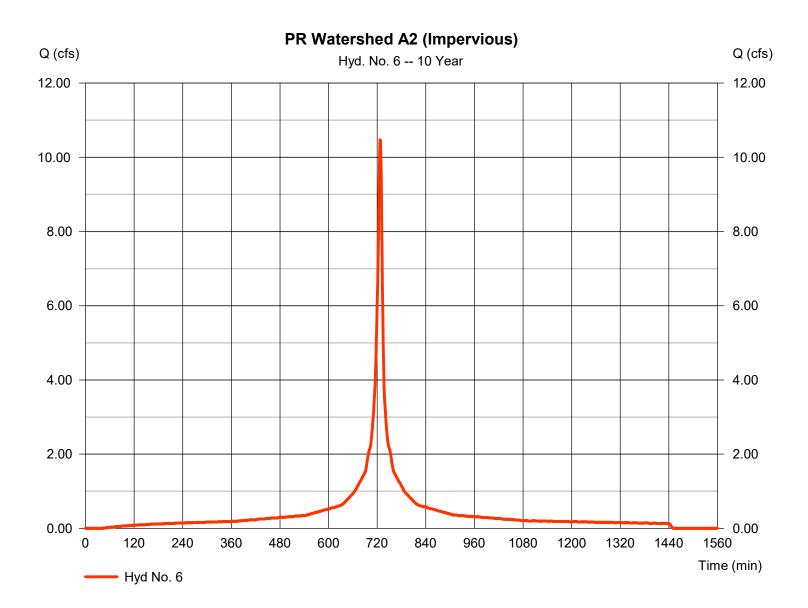

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

Basin A1

Hydrograph type	= Reservoir	Peak discharge	= 3.013 cfs
Storm frequency	= 10 yrs	Time to peak	= 746 min
Time interval	= 1 min	Hyd. volume	= 30,140 cuft
Inflow hyd. No.	= 3 - Watershed A1	Max. Elevation	= 49.82 ft
Reservoir name	= Basin A1	Max. Storage	= 19,024 cuft
		5	,

Storage Indication method used.



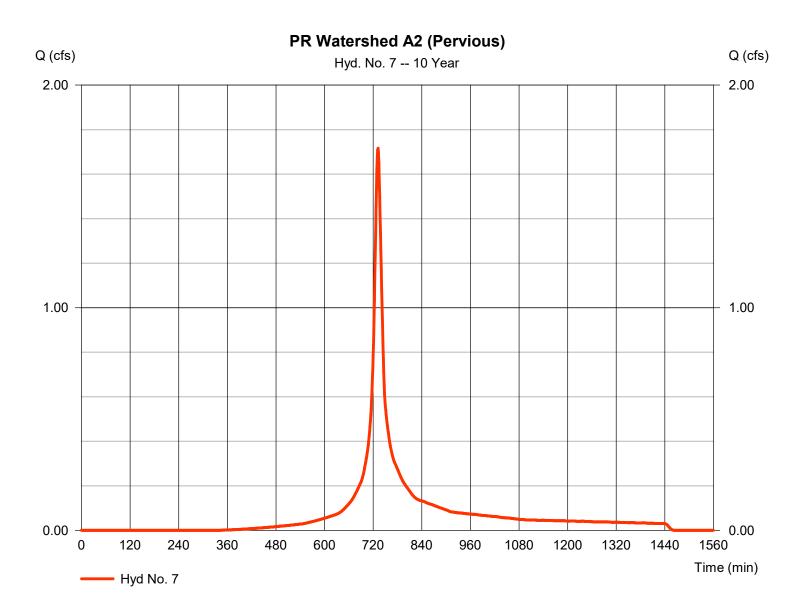
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

PR Watershed A2 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 10.47 cfs
Storm frequency	= 10 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 40,308 cuft
Drainage area	= 1.920 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ \$00365e1620ctoP rojectD)at a∖_48e cipline\Site Civil\Storr

33

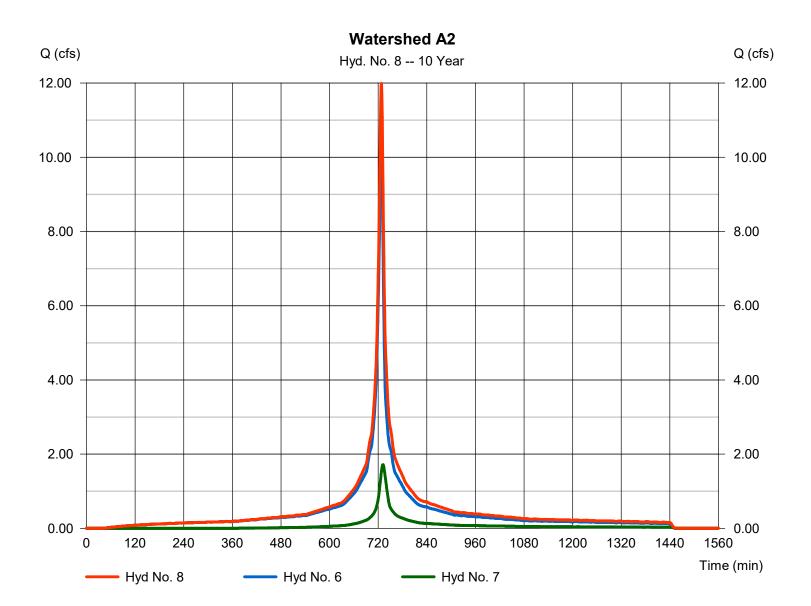

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

PR Watershed A2 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 1.716 cfs
Storm frequency	= 10 yrs	Time to peak	= 732 min
Time interval	= 1 min	Hyd. volume	= 7,038 cuft
Drainage area	= 0.480 ac	Curve number	= 81*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 14.00 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300aperformer ojectD)at a_484 cipline\Site Civil\Storr

* Composite (Area/CN) = [(0.390 x 80) + (0.050 x 91)] / 0.480

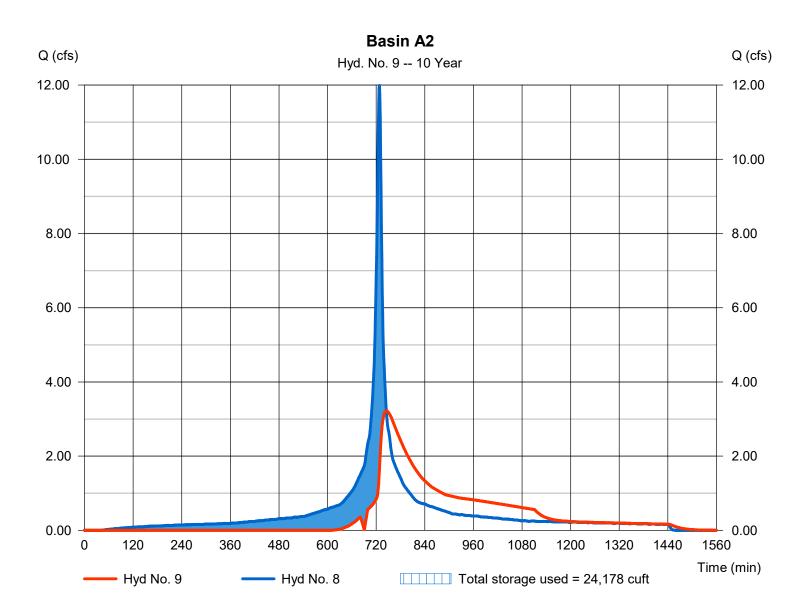

34

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Watershed A2

Hydrograph type	= Combine	Peak discharge	= 11.99 cfs
Storm frequency	= 10 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 47,345 cuft
Inflow hyds.	= 6, 7	Contrib. drain. area	= 2.400 ac

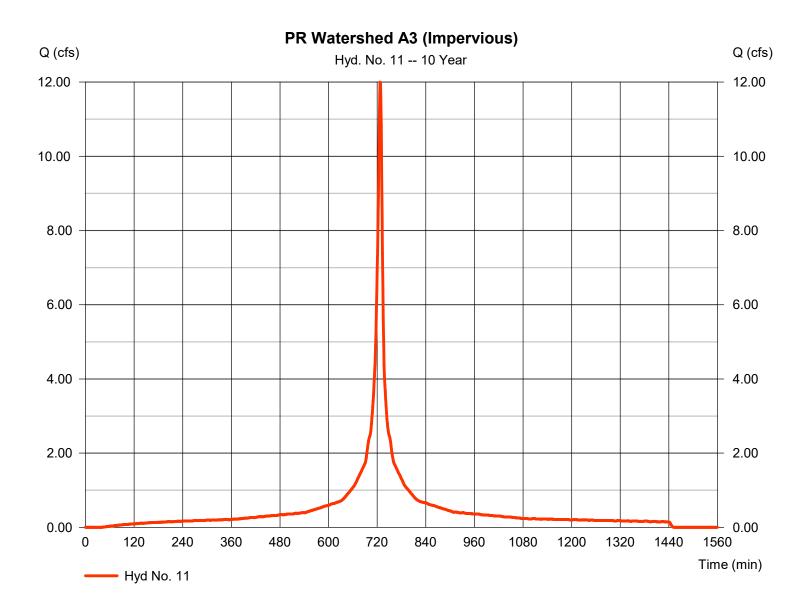

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Basin A2

Peak discharge	= 3.221 cfs
Time to peak	= 745 min
Hyd. volume	= 35,784 cuft
A2 Max. Elevation	= 49.87 ft
Max. Storage	= 24,178 cuft
	Time to peak Hyd. volume 2 Max. Elevation

Storage Indication method used.

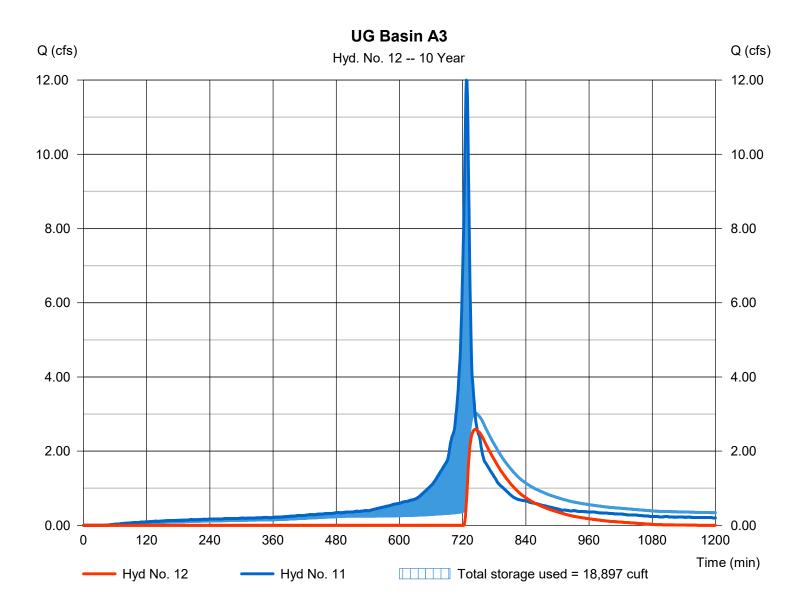


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

PR Watershed A3 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 12.00 cfs
Storm frequency	= 10 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 46,186 cuft
Drainage area	= 2.200 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	AR\data0\ 800365eff20ctoP rojectD	0at a∖_48e cipline∖Site Civil∖Storr

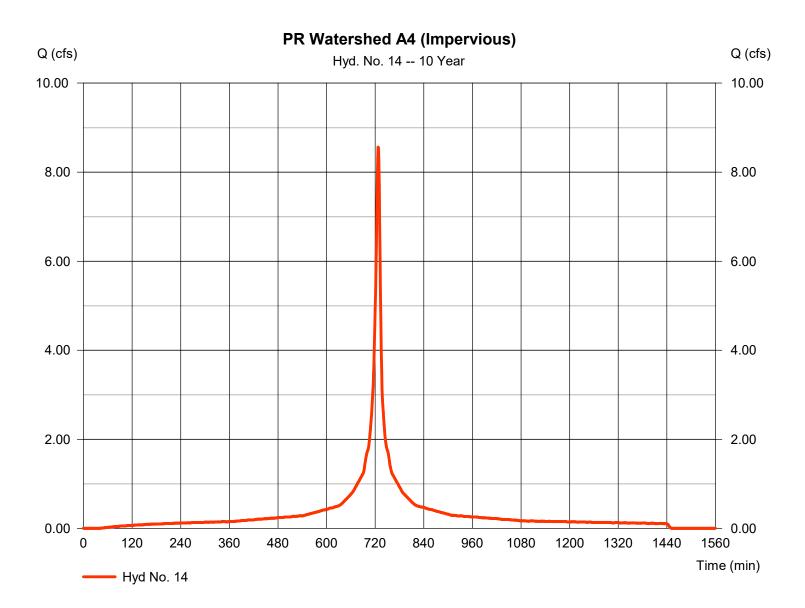

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 12

UG Basin A3

Hydrograph type Storm frequency Time interval Inflow hyd. No. Reservoir name	 Reservoir 10 yrs 1 min 11 - PR Watershed A3 (Impe UG Detention A3 	Peak discharge Time to peak Hyd. volume r vlidaxs)Elevation Max. Storage	 = 2.586 cfs = 744 min = 14,745 cuft = 50.41 ft = 18,897 cuft
Reservoir name	= UG Detention A3	Max. Storage	= 18,897 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

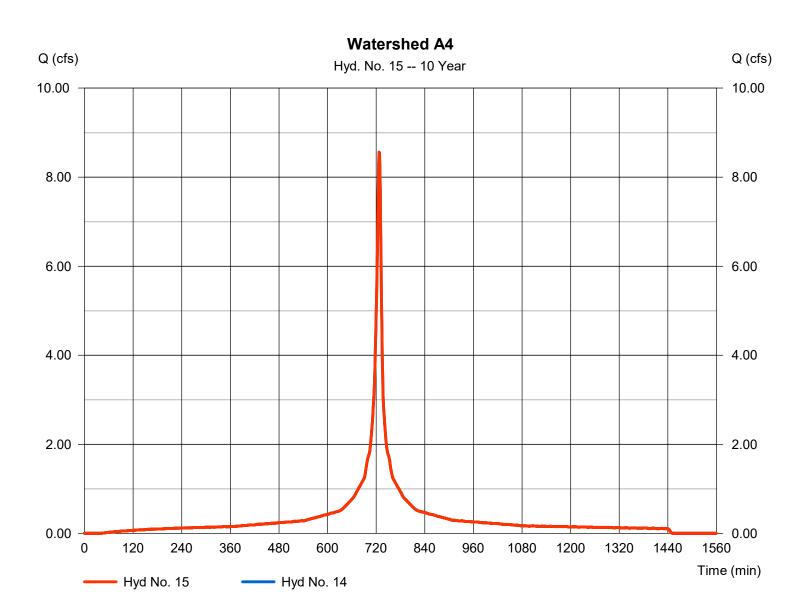


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 14

PR Watershed A4 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 8.561 cfs
Storm frequency	= 10 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 32,960 cuft
Drainage area	= 1.570 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	AR\data0\ 800365elf20ctoP rojectD	0at a∖_48e cipline∖Site Civil∖Storr

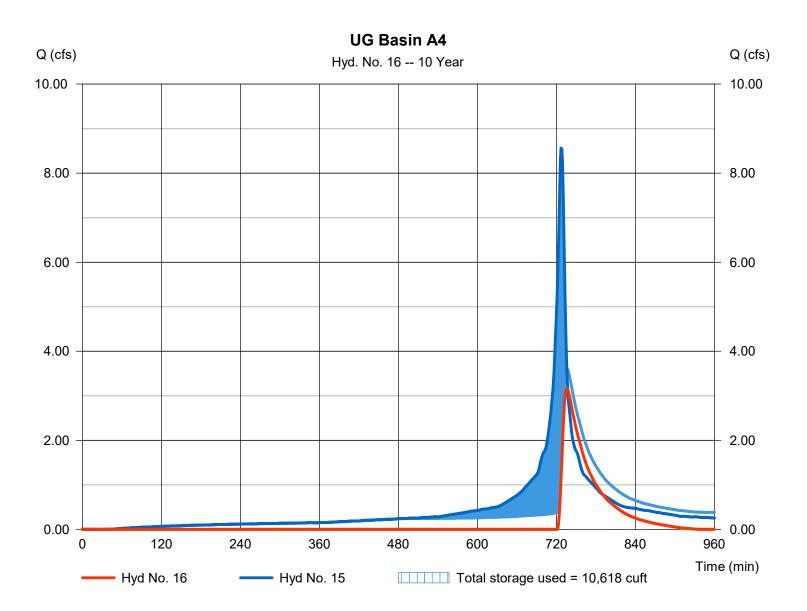


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 15

Watershed A4

Hydrograph type	= Combine	Peak discharge	= 8.561 cfs
Storm frequency	= 10 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 32,960 cuft
Inflow hyds.	= 14	Contrib. drain. area	= 1.570 ac
,			

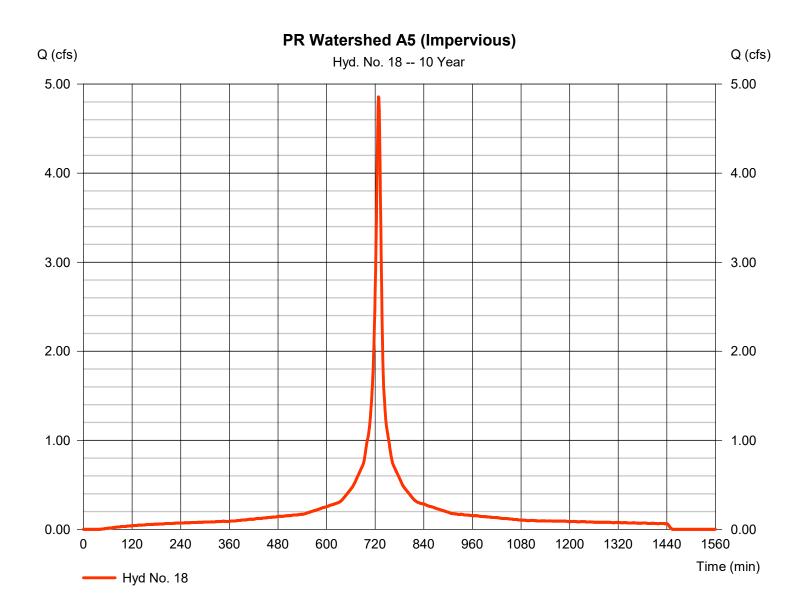

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 16

UG Basin A4

Hydrograph type	= Reservoir	Peak discharge	= 3.164 cfs
Storm frequency	= 10 yrs	Time to peak	= 736 min
Time interval	= 1 min = 15 - Watershed A4	Hyd. volume	= 9,021 cuft = 52.46 ft
Inflow hyd. No.	= UG Detention A4	Max. Elevation	= 52.46 ft
Reservoir name		Max. Storage	= 10,618 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

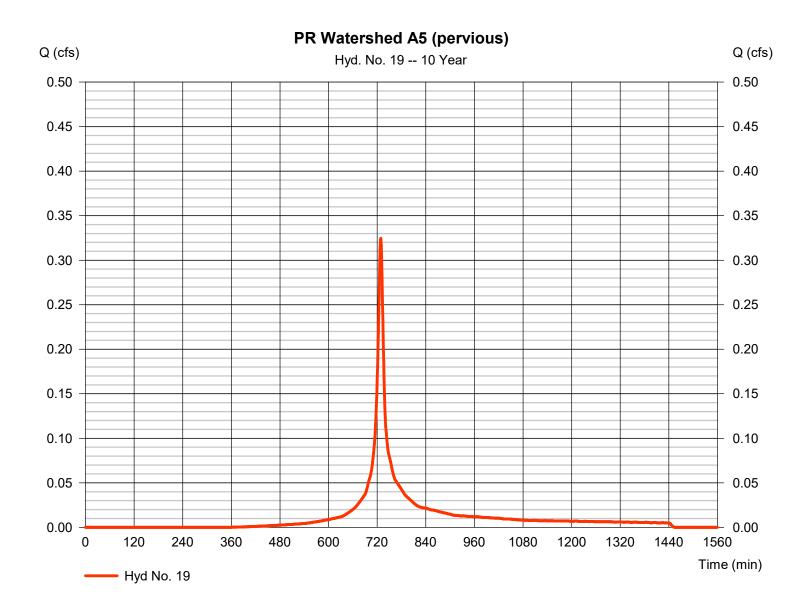


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 18

PR Watershed A5 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 4.856 cfs
Storm frequency	= 10 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 19,809 cuft
Drainage area	= 0.920 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 800aperlfa0toP roject D	0at a∖_48e cipline∖Site Civil∖Storr

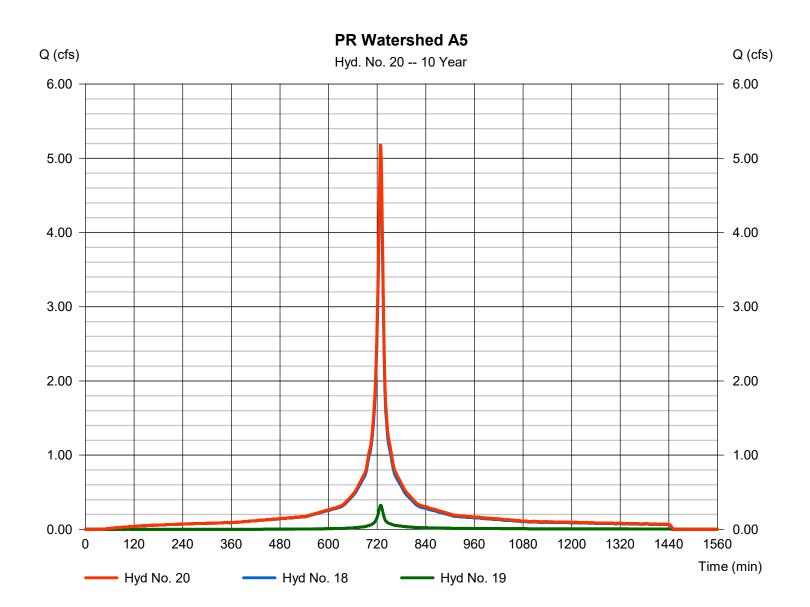


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 19

PR Watershed A5 (pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.324 cfs
Storm frequency	= 10 yrs	Time to peak	= 729 min
Time interval	= 1 min	Hyd. volume	= 1,143 cuft
Drainage area	= 0.080 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	R\data0\ 8008661620ctoP rojectD	0at a∖_408e cipline∖Site Civil∖Storr

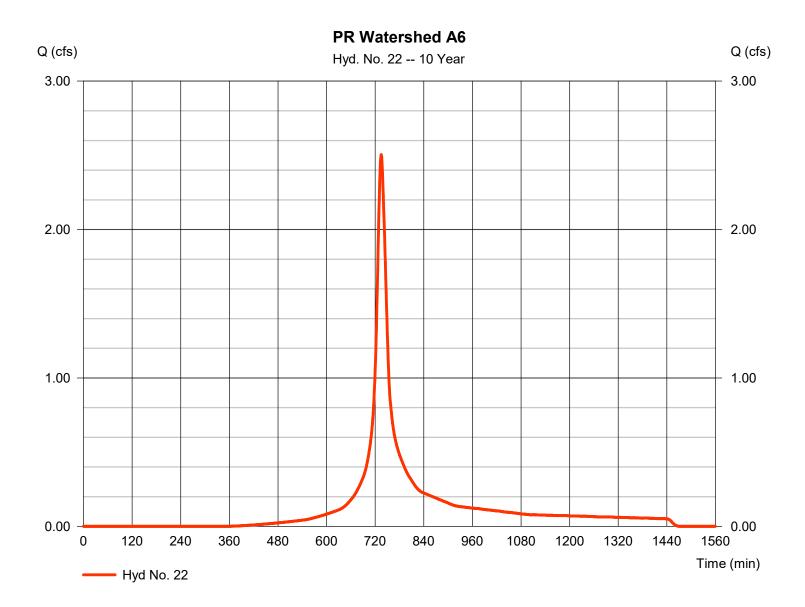


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 20

PR Watershed A5

Hydrograph type	= Combine	Peak discharge	= 5.179 cfs
Storm frequency	= 10 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 20,952 cuft
Inflow hyds.	= 18, 19	Contrib. drain. area	= 1.000 ac
5			

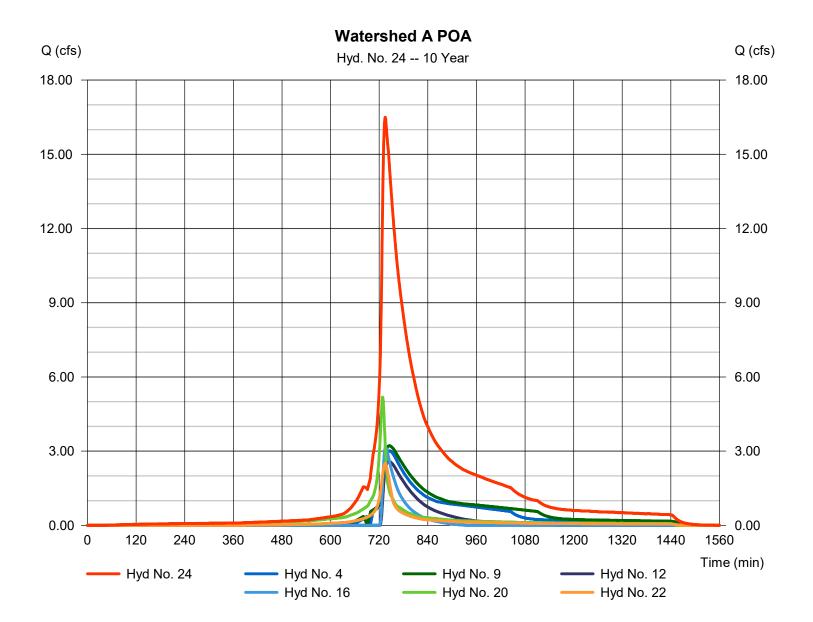

44

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 22

PR Watershed A6

Hydrograph type	= SCS Runoff	Peak discharge	= 2.505 cfs
Storm frequency	= 10 yrs	Time to peak	= 735 min
Time interval	= 1 min	Hyd. volume	= 11,570 cuft
Drainage area	= 0.810 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ \$00365e1620ctoP rojectD	0at a∖_48e cipline∖Site Civil∖Storr

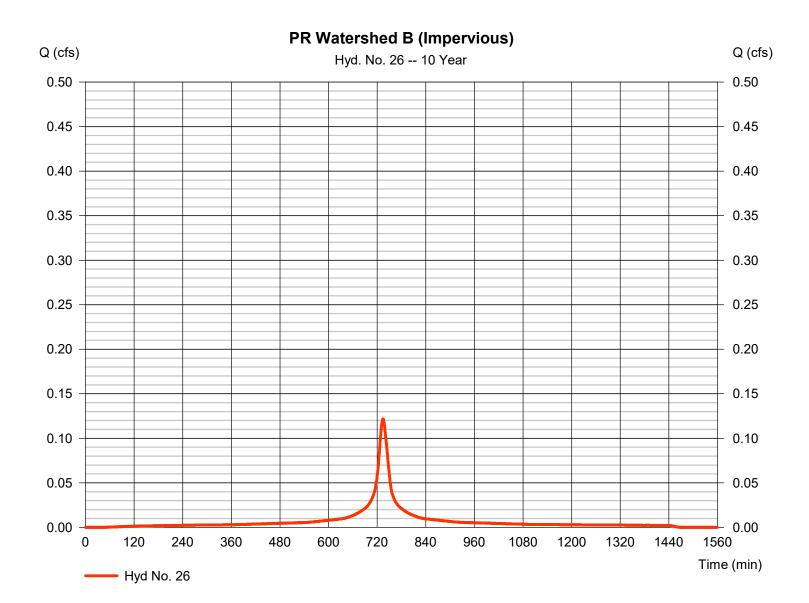


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 24

Watershed A POA

Hydrograph type	= Combine	Peak discharge	= 16.50 cfs
Storm frequency	= 10 yrs	Time to peak	= 735 min
Time interval	= 1 min	Hyd. volume	= 122,212 cuft
Inflow hyds.	= 4, 9, 12, 16, 20, 22	Contrib. drain. area	= 0.810 ac
-			

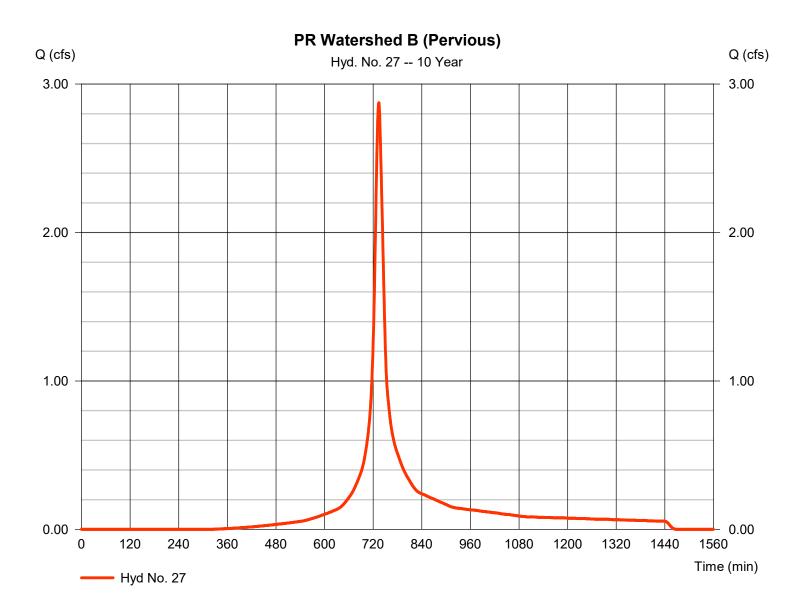


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 26

PR Watershed B (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.122 cfs
Storm frequency	= 10 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 646 cuft
Drainage area	= 0.030 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	AR\data0\ 300365e1620ctoP rojectD	Data_ 434 cipline\Site Civil\Storn

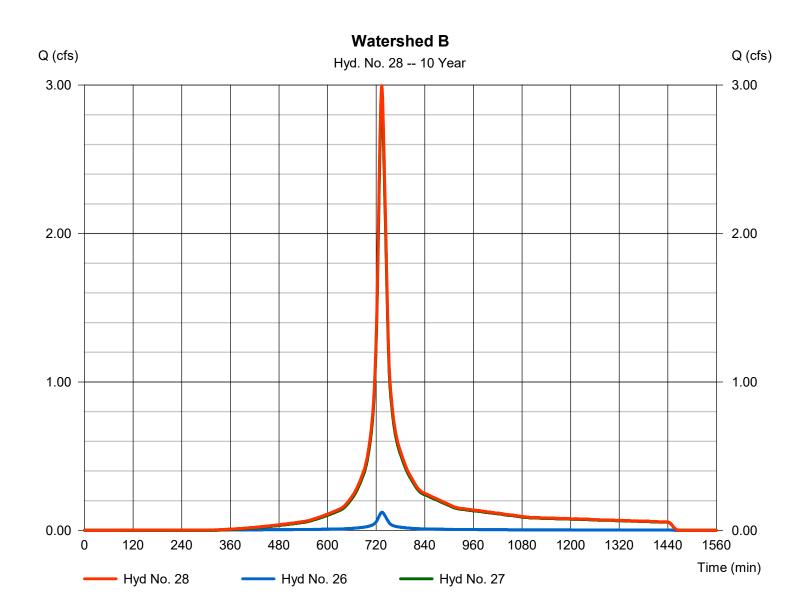

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 27

PR Watershed B (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 2.874 cfs
Storm frequency	= 10 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 12,789 cuft
Drainage area	= 0.860 ac	Curve number	= 82*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.00 min
Total precip.	= 6.17 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 130245561120Ct&P roject D	Dat a_484 cipline\Site Civil\Storn

* Composite (Area/CN) = [(0.700 x 80) + (0.020 x 77) + (0.140 x 91)] / 0.860



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 28

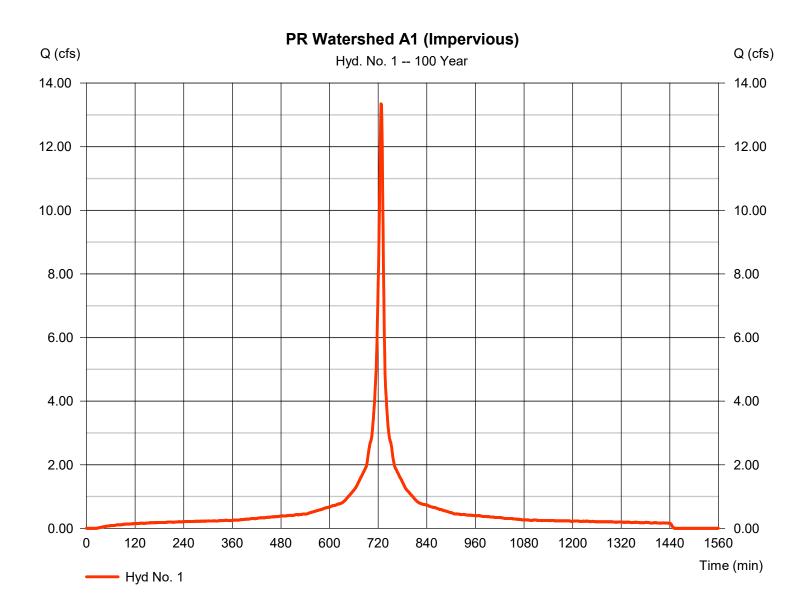
Watershed B

Hydrograph type	= Combine	Peak discharge	= 2.996 cfs
Storm frequency	= 10 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 13,435 cuft
Inflow hyds.	= 26, 27	Contrib. drain. area	= 0.890 ac

49

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

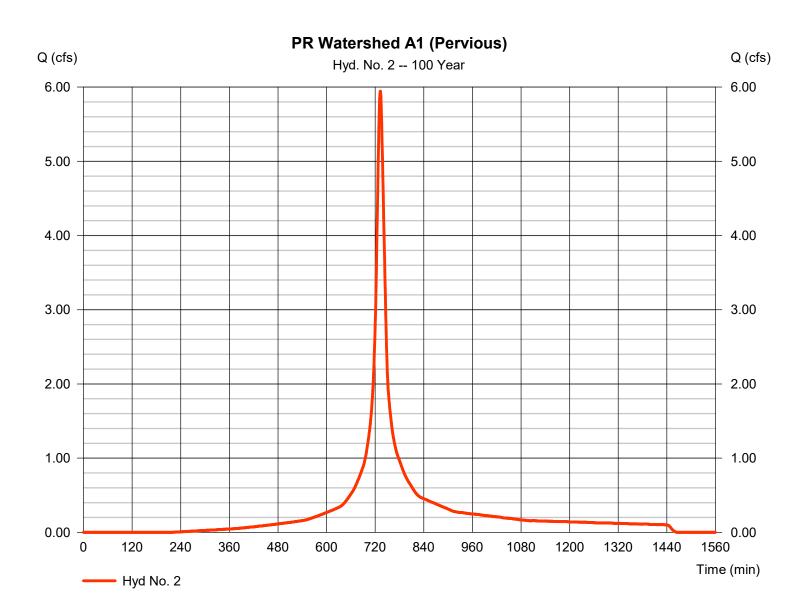

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	13.35	1	727	52,178				PR Watershed A1 (Impervious)
2	SCS Runoff	5.945	1	733	26,425				PR Watershed A1 (Pervious)
3	Combine	18.51	1	728	78,603	1, 2			Watershed A1
4	Reservoir	9.274	1	739	69,316	3	50.90	28,289	Basin A1
6	SCS Runoff	19.41	1	727	75,895				PR Watershed A2 (Impervious)
7	SCS Runoff	3.684	1	732	15,698				PR Watershed A2 (Pervious)
8	Combine	22.73	1	728	91,593	6, 7			Watershed A2
9	Reservoir	9.833	1	737	80,032	8	50.98	36,162	Basin A2
11	SCS Runoff	22.24	1	727	86,963				PR Watershed A3 (Impervious)
12	Reservoir	8.458	1	736	49,827	11	51.18	30,902	UG Basin A3
14	SCS Runoff	15.87	1	727	62,060				PR Watershed A4 (Impervious)
15	Combine	15.87	1	727	62,060	14			Watershed A4
16	Reservoir	11.58	1	731	30,254	15	53.23	14,721	UG Basin A4
18	SCS Runoff	9.005	1	728	37,299				PR Watershed A5 (Impervious)
19	SCS Runoff	0.703	1	729	2,578				PR Watershed A5 (pervious)
20	Combine	9.708	1	728	39,877	18, 19			PR Watershed A5
22	SCS Runoff	5.459	1	735	26,098				PR Watershed A6
24	Combine	50.72	1	732	295,404	4, 9, 12, 16, 20, 22,			Watershed A POA
26	SCS Runoff	0.226	1	734	1,216				PR Watershed B (Impervious)
27	SCS Runoff	6.102	1	734	28,215				PR Watershed B (Pervious)
28	Combine	6.328	1	734	29,431	26, 27			Watershed B
				ecipitatior					

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

PR Watershed A1 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 13.35 cfs
Storm frequency	= 100 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 52,178 cuft
Drainage area	= 1.320 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 11.41 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	PAR\data0\1800445611640ctoProject D	0at a∖_48t4 cipline∖Site Civil∖Storr

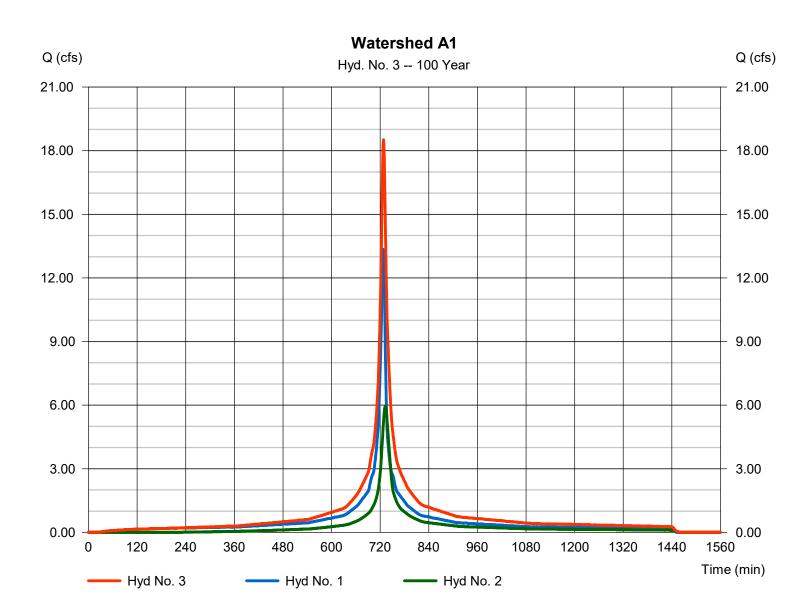

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

PR Watershed A1 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 5.945 cfs
Storm frequency	= 100 yrs	Time to peak	= 733 min
Time interval	= 1 min	Hyd. volume	= 26,425 cuft
Drainage area	= 0.810 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 16.00 min
Total precip.	= 11.41 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300365e1factoP rojectD)at a_484 cipline\Site Civil\Storr

* Composite (Area/CN) = [(0.790 x 80) + (0.020 x 91)] / 0.810

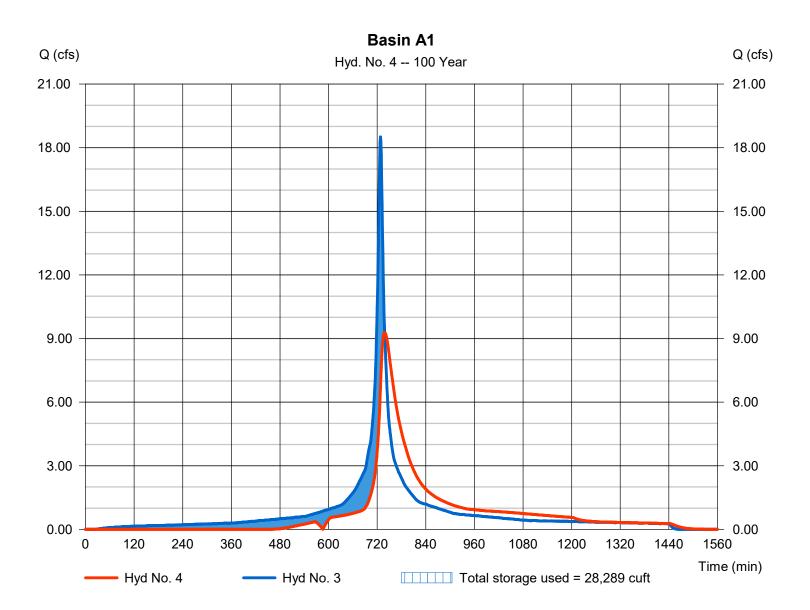

52

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Watershed A1

Hydrograph type= CombineStorm frequency= 100 yrsTime interval= 1 minInflow hyds.= 1, 2	Peak discharge Time to peak Hyd. volume Contrib. drain. area	= 18.51 cfs = 728 min = 78,603 cuft = 2.130 ac
--	---	---

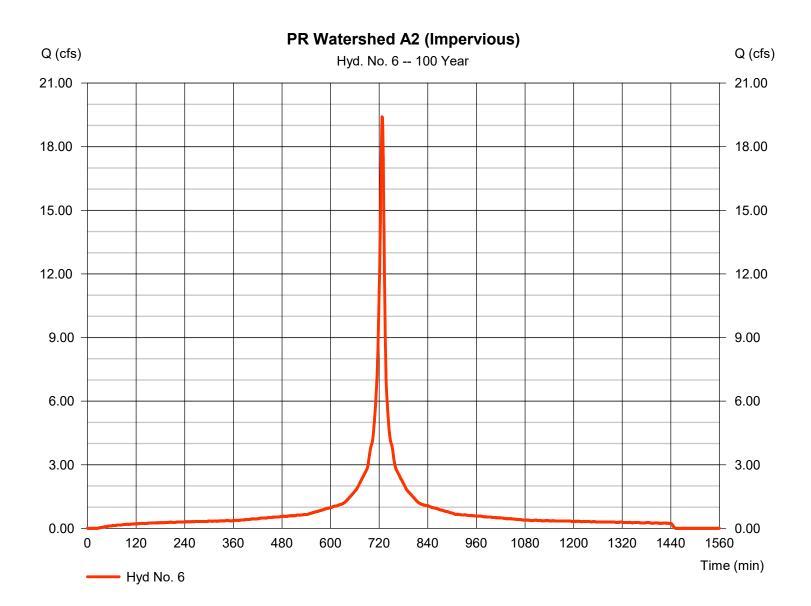

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

Basin A1

Hydrograph type	= Reservoir	Peak discharge	= 9.274 cfs
Storm frequency	= 100 yrs	Time to peak	= 739 min
Time interval	= 1 min	Hyd. volume	= 69,316 cuft
Inflow hyd. No.	= 3 - Watershed A1	Max. Elevation	= 50.90 ft
Reservoir name	= Basin A1	Max. Storage	= 28,289 cuft

Storage Indication method used.

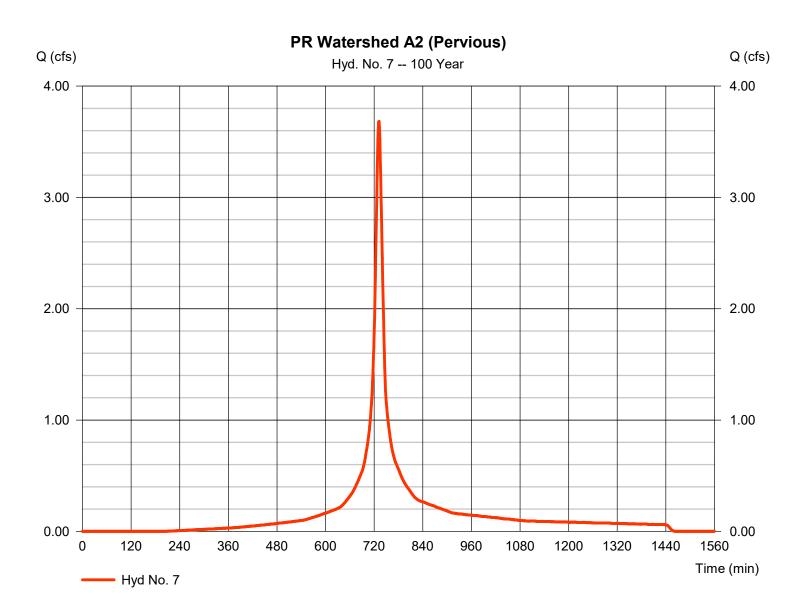


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

PR Watershed A2 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 19.41 cfs
Storm frequency	= 100 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 75,895 cuft
Drainage area	= 1.920 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 11.41 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	AR\data0\ 800365elf20ctoP rojectD	0at a∖_48e cipline∖Site Civil∖Storr

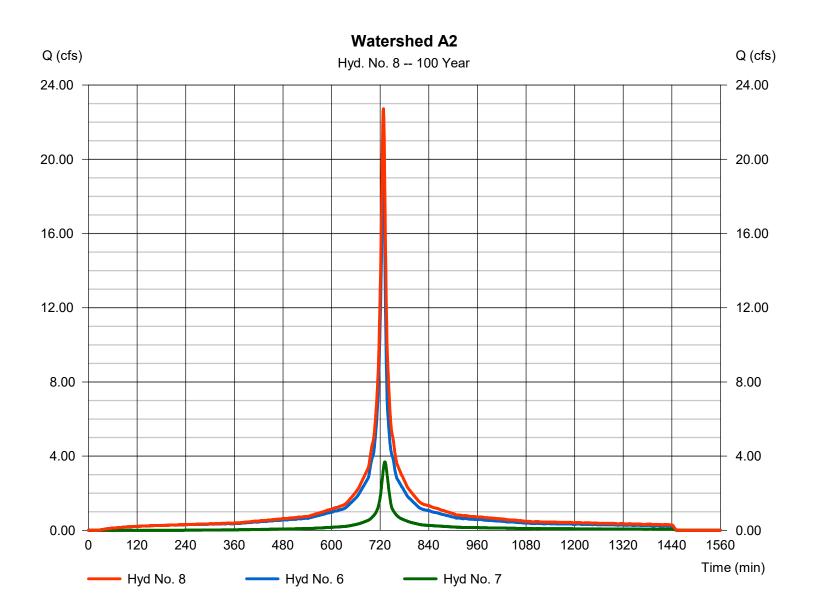

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

PR Watershed A2 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 3.684 cfs
Storm frequency	= 100 yrs	Time to peak	= 732 min
Time interval	= 1 min	Hyd. volume	= 15,698 cuft
Drainage area	= 0.480 ac	Curve number	= 81*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 14.00 min
Total precip.	= 11.41 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300366ffactoP rojectD)at a_4384 cipline\Site Civil\Storr

* Composite (Area/CN) = [(0.390 x 80) + (0.050 x 91)] / 0.480


56

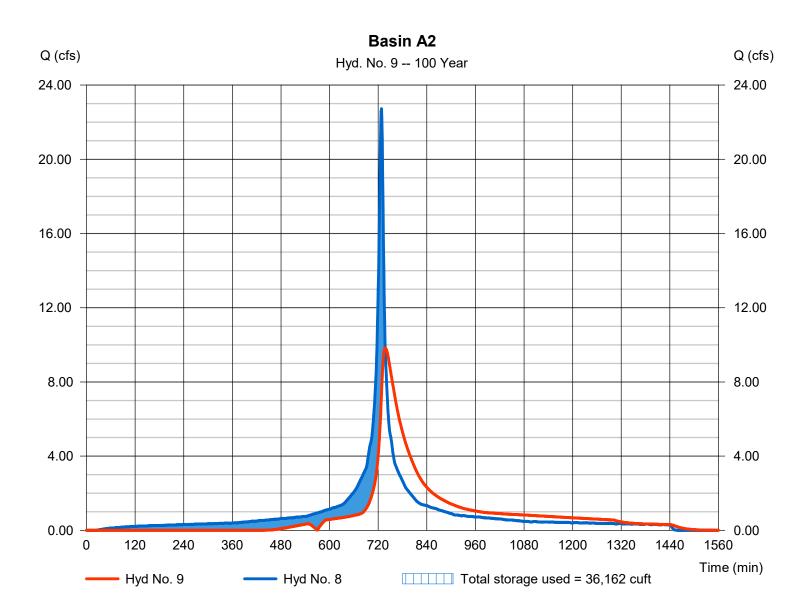
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Watershed A2

Hydrograph type	= Combine	Peak discharge	= 22.73 cfs
Storm frequency	= 100 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 91,593 cuft
Inflow hyds.	= 6, 7	Contrib. drain. area	= 2.400 ac

57

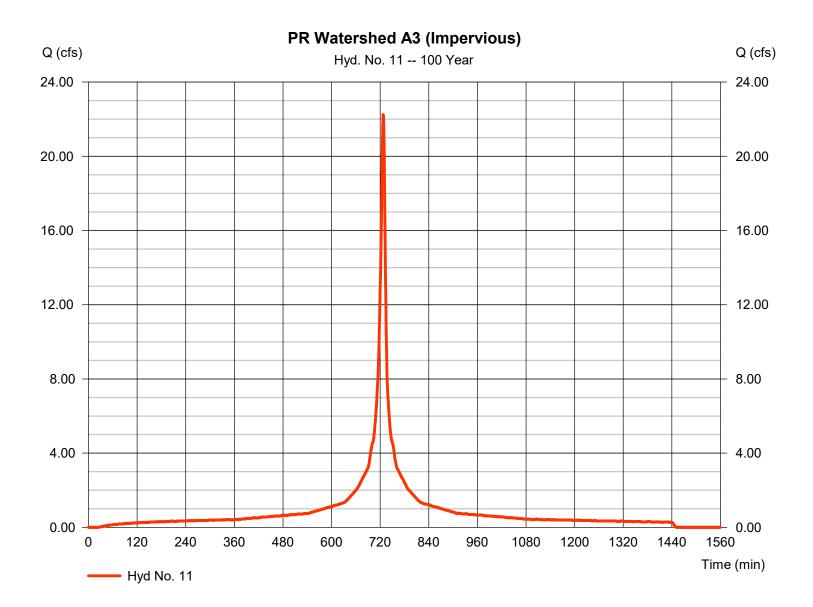

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Basin A2

Hydrograph type	= Reservoir	Peak discharge	= 9.833 cfs
Storm frequency	= 100 yrs	Time to peak	= 737 min
Time interval	= 1 min	Hyd. volume	= 80,032 cuft
Inflow hyd. No.	= 8 - Watershed A2	Max. Elevation	= 50.98 ft
Reservoir name	= Basin A2	Max. Storage	= 36,162 cuft

Storage Indication method used.



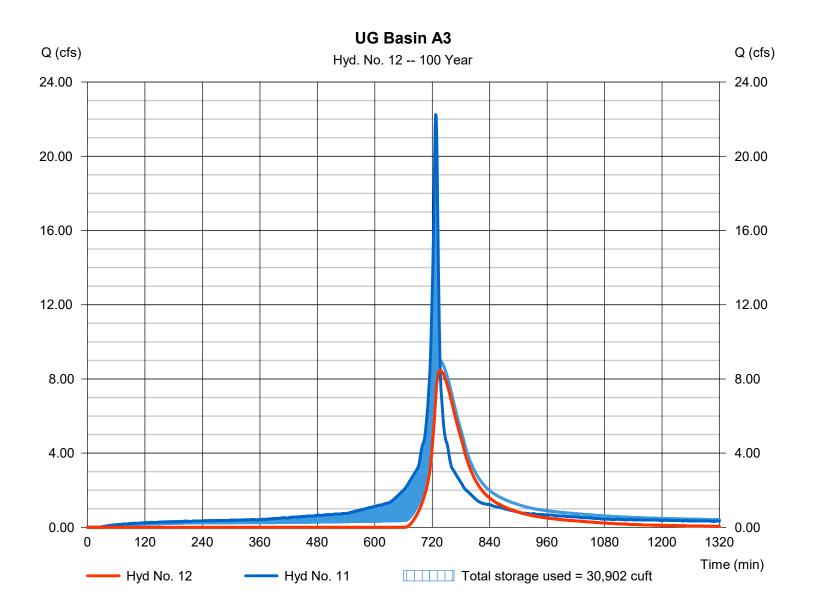
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

PR Watershed A3 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 22.24 cfs
Storm frequency	= 100 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 86,963 cuft
Drainage area	= 2.200 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 11.41 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	AR\data0\ 800365eff20ctoP rojectD	0at a∖_48e cipline∖Site Civil∖Storr

59

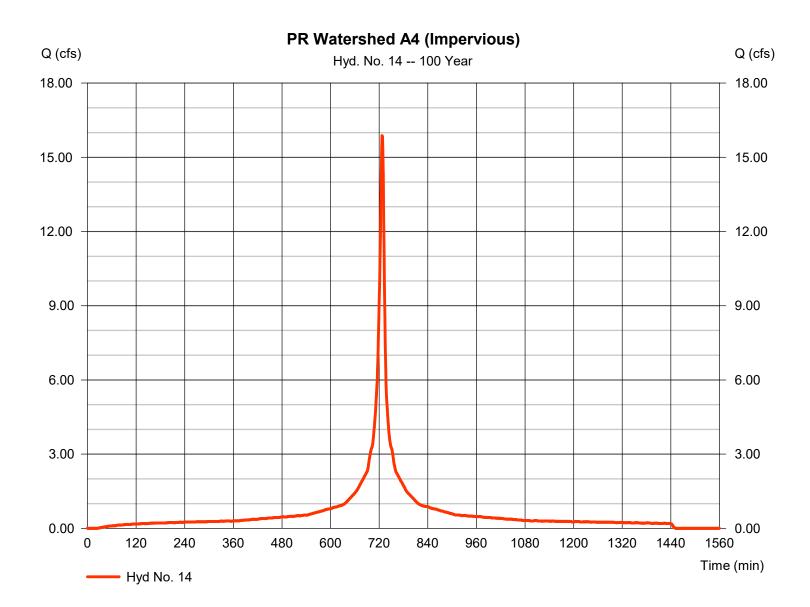

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 12

UG Basin A3

· · ·	,	 8.458 cfs 736 min 49,827 cuft 51.18 ft 30 902 cuft
= UG Detention A3	Max. Storage	= 30,902 cuft
	= 100 yrs = 1 min	= 100 yrsTime to peak= 1 minHyd. volume= 11 - PR Watershed A3 (Imperviloaus) Elevation

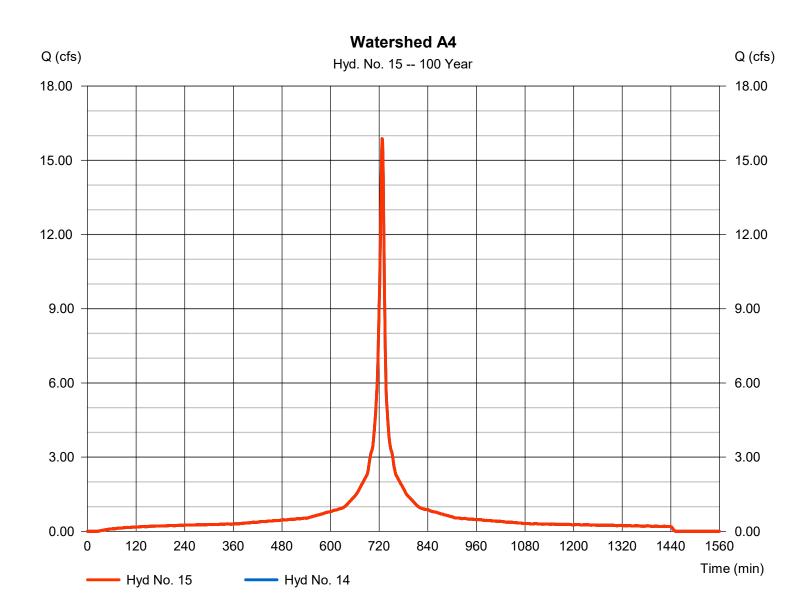
Storage Indication method used. Exfiltration extracted from Outflow.



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 14

PR Watershed A4 (Impervious)

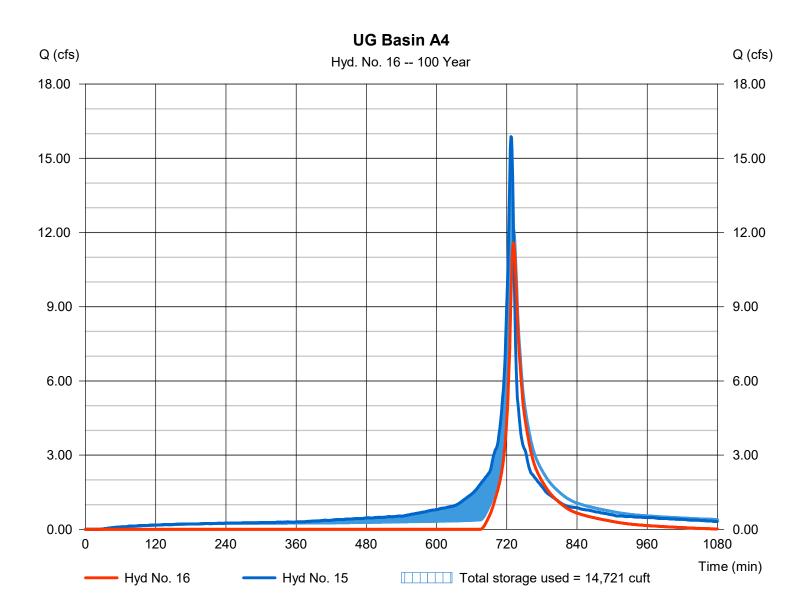

Hydrograph type	= SCS Runoff	Peak discharge	= 15.87 cfs
Storm frequency	= 100 yrs	Time to peak	= 727 min
Time interval	= 1 min	Hyd. volume	= 62,060 cuft
Drainage area	= 1.570 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 11.41 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300366ffactoP rojectD)at a_4034 cipline\Site Civil\Storr

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 15

Watershed A4

62

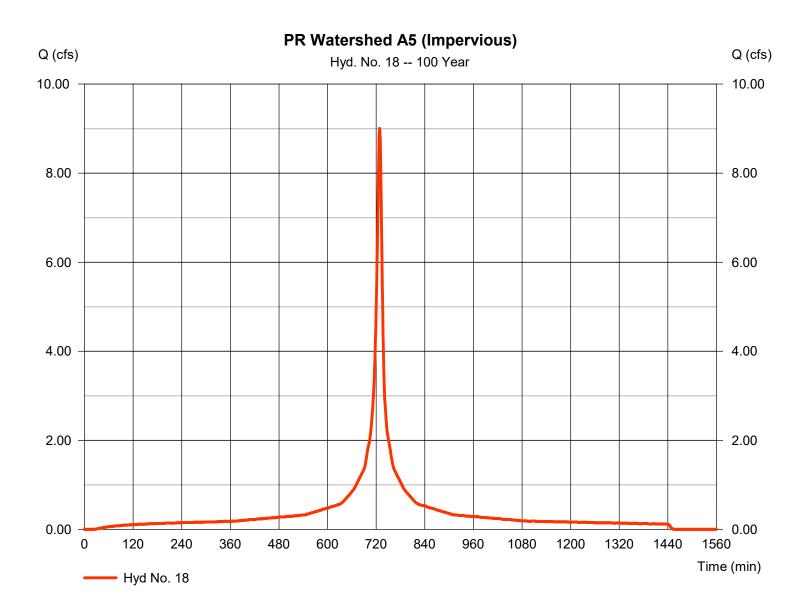

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 16

UG Basin A4

Hydrograph type	= Reservoir	Peak discharge	= 11.58 cfs
Storm frequency	= 100 yrs	Time to peak	= 731 min
Time interval	= 1 min	Hyd. volume	= 30,254 cuft
Inflow hyd. No.	= 15 - Watershed A4	Max. Elevation	= 53.23 ft
Reservoir name	= UG Detention A4	Max. Storage	= 14,721 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

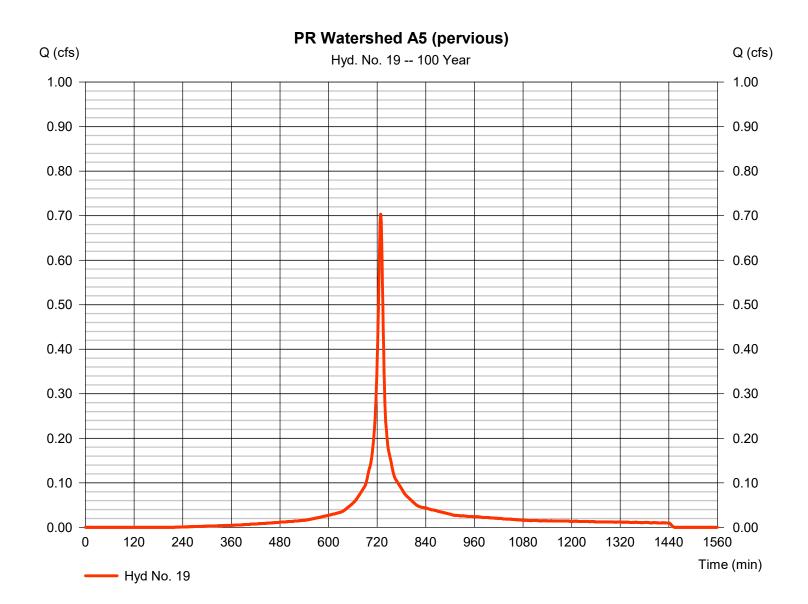

63

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 18

PR Watershed A5 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 9.005 cfs
Storm frequency	= 100 yrs	Time to peak	= 728 min
Time interval	= 1 min	Hyd. volume	= 37,299 cuft
Drainage area	= 0.920 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 11.41 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	AR\data0\ 800365e1620ctoP roject D	0at a∖_48e cipline∖Site Civil∖Storr

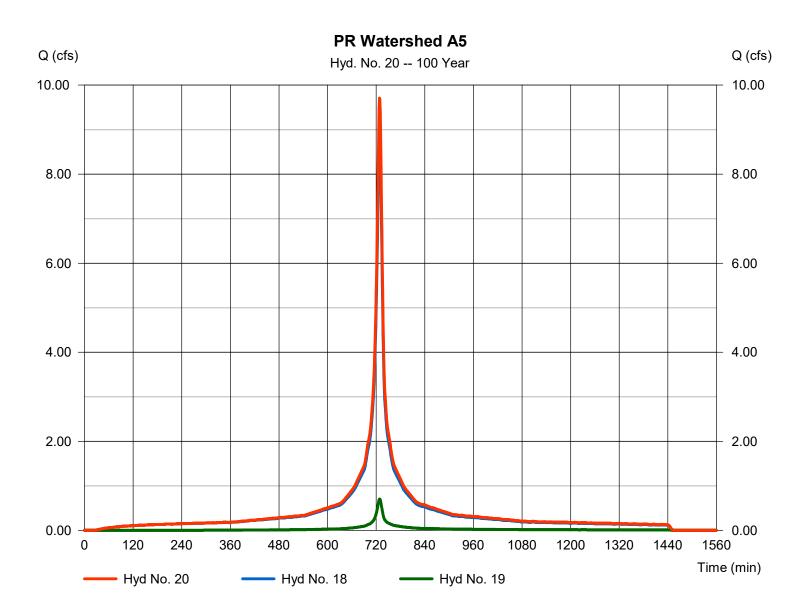


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 19

PR Watershed A5 (pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.703 cfs
Storm frequency	= 100 yrs	Time to peak	= 729 min
Time interval	= 1 min	Hyd. volume	= 2,578 cuft
Drainage area	= 0.080 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 11.41 in	Distribution	= Custom
Storm duration	= \\langan.com\data\PA	AR\data0\ 800365elf20ctoP rojectD)ata_ 484 cipline\Site Civil\Storn

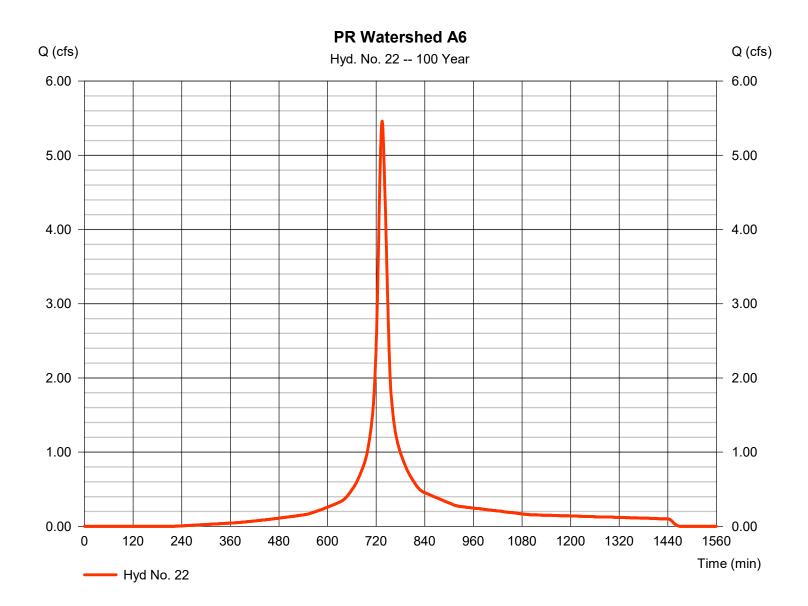


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 20

PR Watershed A5

Hydrograph type= ComilStorm frequency= 100 yTime interval= 1 minInflow hyds.= 18, 1	yrs Time to peak n Hyd. volume	= 9.708 cfs = 728 min = 39,877 cuft = 1.000 ac
		- 1.000 ac

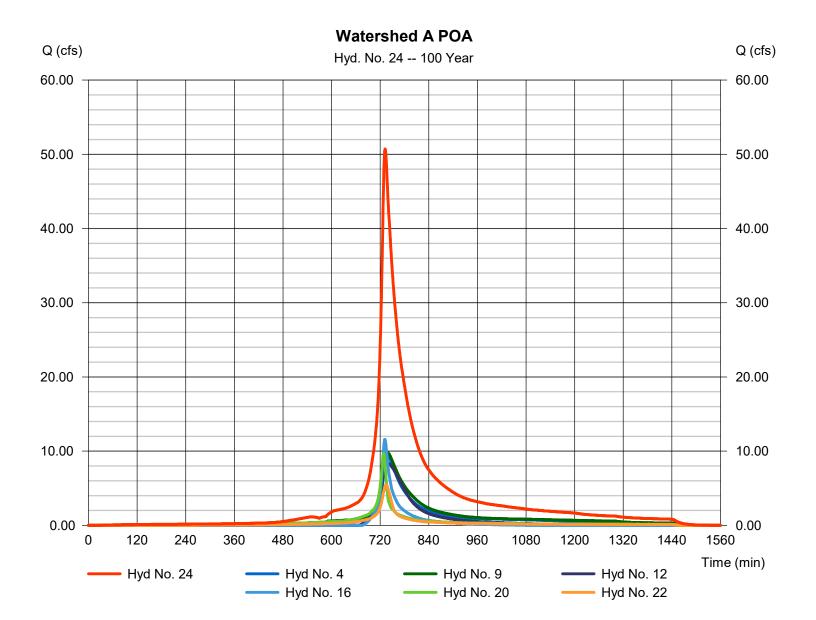

66

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 22

PR Watershed A6

Hydrograph type	= SCS Runoff	Peak discharge	= 5.459 cfs
Storm frequency	= 100 yrs	Time to peak	= 735 min
Time interval	= 1 min	Hyd. volume	= 26,098 cuft
Drainage area	= 0.810 ac	Curve number	= 80
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 11.41 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	PAR\data0\80044561640ctoProjectD)at a∖_434 cipline∖Site Civil∖Storr

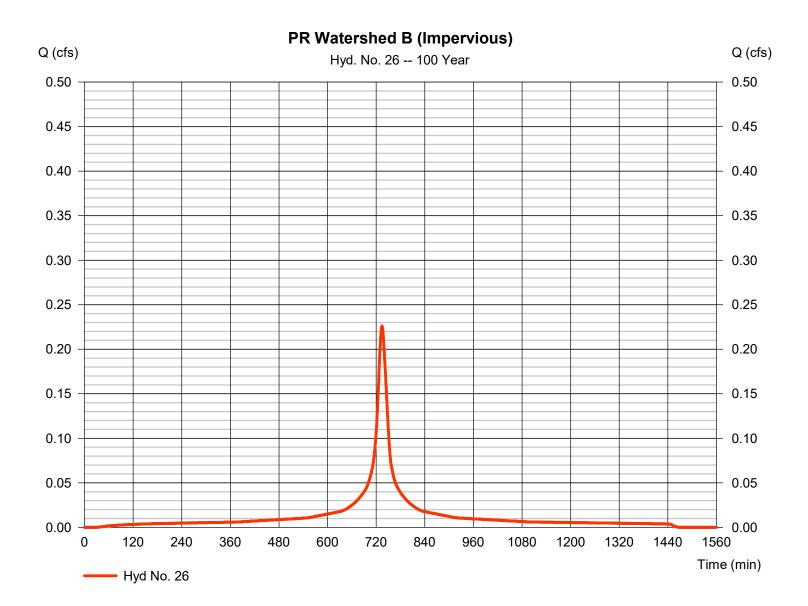


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 24

Watershed A POA

Hydrograph type	= Combine	Peak discharge	= 50.72 cfs
Storm frequency	= 100 yrs	Time to peak	= 732 min
Time interval	= 1 min	Hyd. volume	= 295,404 cuft
Inflow hyds.	= 4, 9, 12, 16, 20, 22	Contrib. drain. area	= 0.810 ac
•			

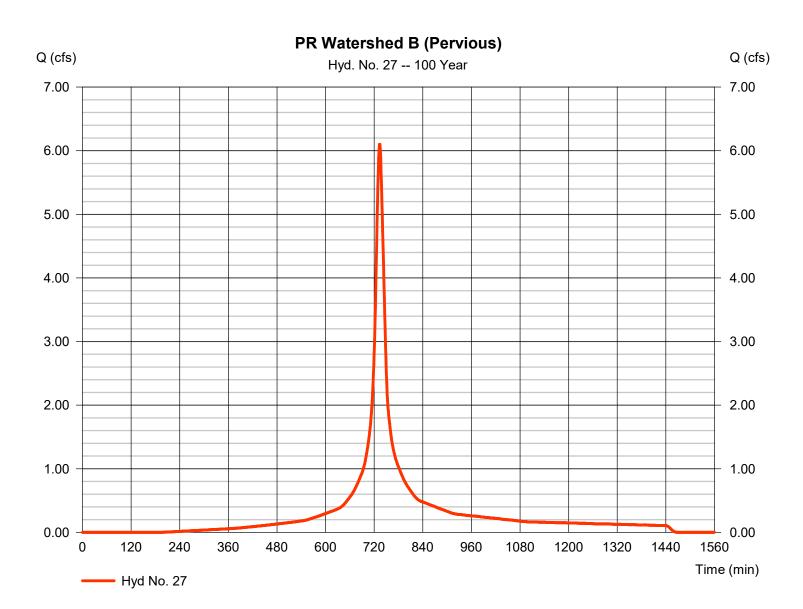


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 26

PR Watershed B (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.226 cfs
Storm frequency	= 100 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 1,216 cuft
Drainage area	= 0.030 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 11.41 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 80035561520ctoP roject D	Dat a_434 cipline\Site Civil\Storn

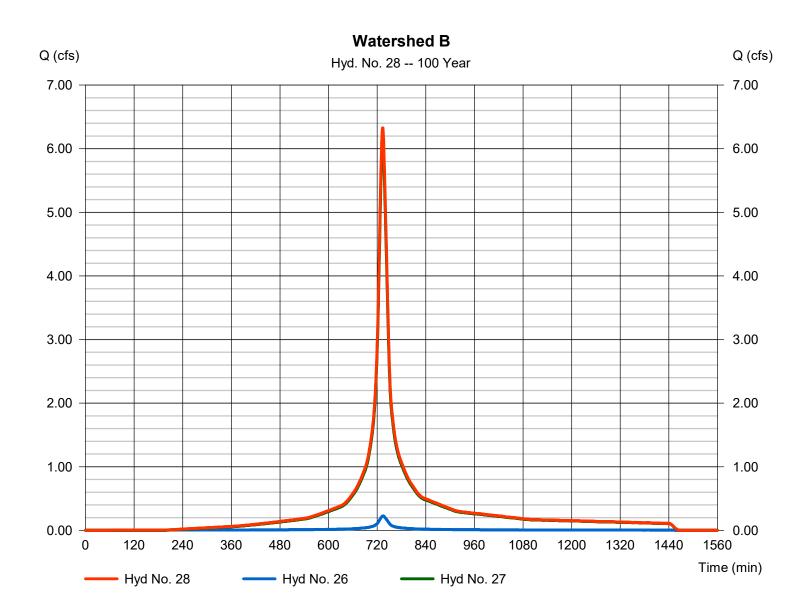

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 27

PR Watershed B (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 6.102 cfs
Storm frequency	= 100 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 28,215 cuft
Drainage area	= 0.860 ac	Curve number	= 82*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 18.00 min
Total precip.	= 11.41 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300466ffactoP rojectD)at a∖_484 cipline\Site Civil\Storn

* Composite (Area/CN) = [(0.700 x 80) + (0.020 x 77) + (0.140 x 91)] / 0.860


70

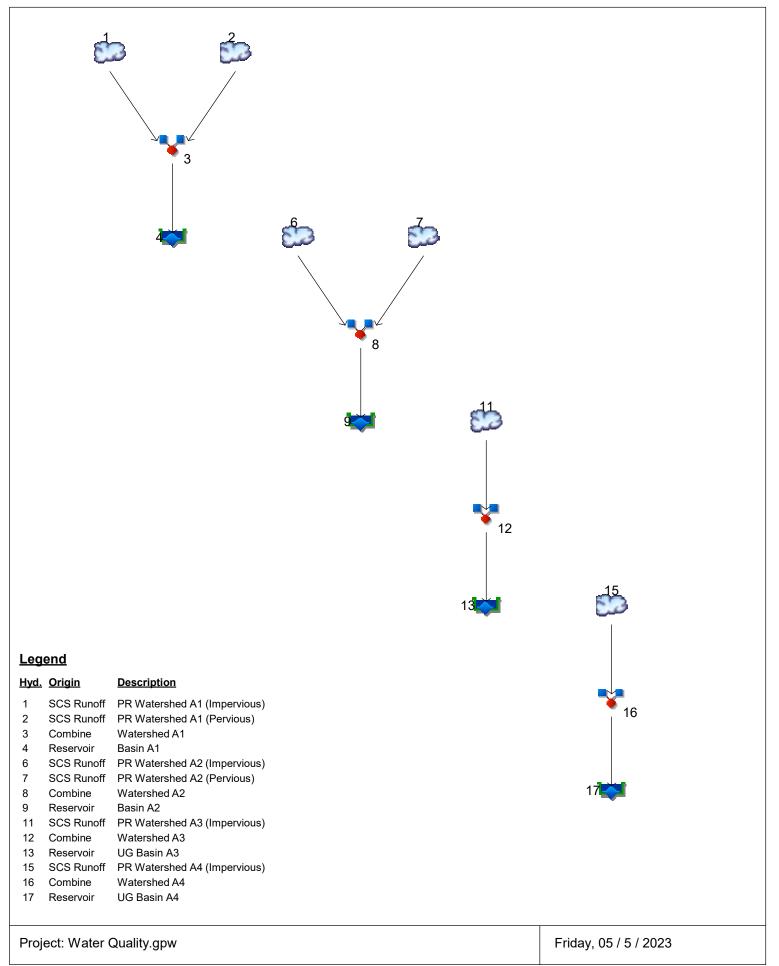
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 28

Watershed B

Hydrograph type	= Combine	Peak discharge	= 6.328 cfs
Storm frequency	= 100 yrs	Time to peak	= 734 min
Time interval	= 1 min	Hyd. volume	= 29,431 cuft
Inflow hyds.	= 26, 27	Contrib. drain. area	= 0.890 ac

71


APPENDIX C

Water Quality Storm Hydrologic Analysis

LANGAN

Watershed Model Schematic

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hydraflow Table of Contents

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

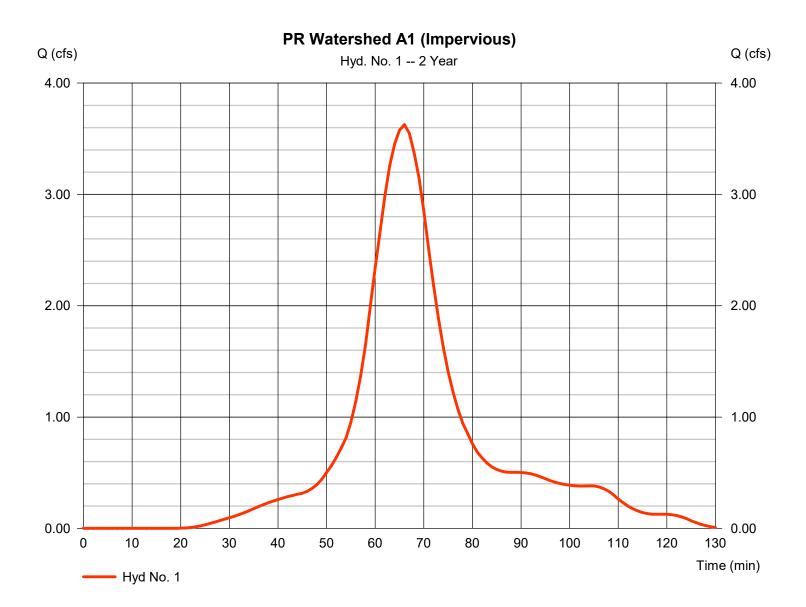
Watershed Model Schematic..... 1

2 - Year

Summary Report	2
Hydrograph Reports	3
Hydrograph No. 1, SCS Runoff, PR Watershed A1 (Impervious)	
Hydrograph No. 2, SCS Runoff, PR Watershed A1 (Pervious)	4
Hydrograph No. 3, Combine, Watershed A1	
Hydrograph No. 4, Reservoir, Basin A1	. 6
Pond Report - Basin A1	
Hydrograph No. 6, SCS Runoff, PR Watershed A2 (Impervious)	. 8
Hydrograph No. 7, SCS Runoff, PR Watershed A2 (Pervious)	
Hydrograph No. 8, Combine, Watershed A2	
Hydrograph No. 9, Reservoir, Basin A2	11
Pond Report - Basin A2	12
Hydrograph No. 11, SCS Runoff, PR Watershed A3 (Impervious)	
Hydrograph No. 12, Combine, Watershed A3	14
Hydrograph No. 13, Reservoir, UG Basin A3	15
Pond Report - UG Detention A3	16
Hydrograph No. 15, SCS Runoff, PR Watershed A4 (Impervious)	17
Hydrograph No. 16, Combine, Watershed A4	18
	19
	20

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

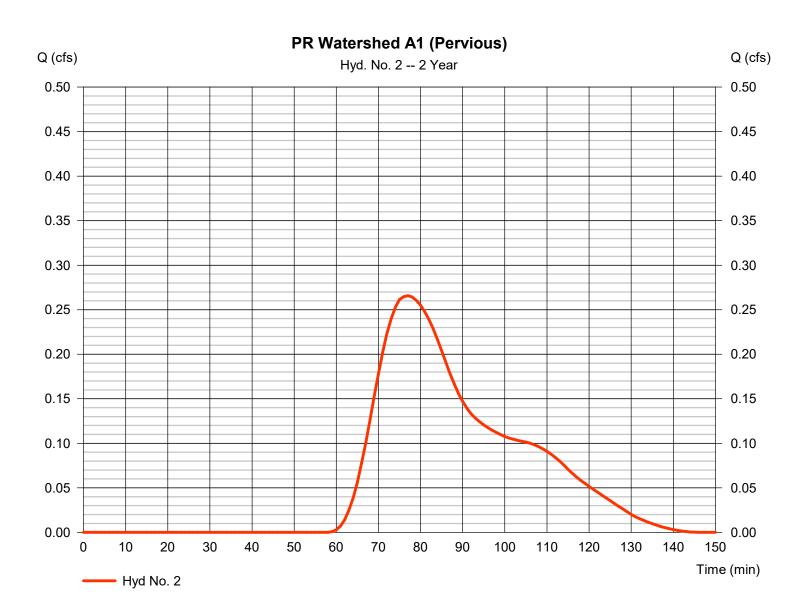

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	3.626	1	66	4,833				PR Watershed A1 (Impervious)
2	SCS Runoff	0.266	1	77	515				PR Watershed A1 (Pervious)
3	Combine	3.704	1	66	5,348	1, 2			Watershed A1
4	Reservoir	0.000	1	n/a	0	3	47.91	5,348	Basin A1
6	SCS Runoff	5.275	1	66	7,030				PR Watershed A2 (Impervious)
7	SCS Runoff	0.183	1	75	326				PR Watershed A2 (Pervious)
8	Combine	5.345	1	66	7,356	6, 7			Watershed A2
9	Reservoir	0.000	1	n/a	0	8	48.00	7,356	Basin A2
11	SCS Runoff	6.044	1	66	8,056				PR Watershed A3 (Impervious)
12	Combine	6.044	1	66	8,056	11			Watershed A3
13	Reservoir	0.000	1	532	0	12	49.67	6,681	UG Basin A3
15	SCS Runoff	4.313	1	66	5,749				PR Watershed A4 (Impervious)
16	Combine	4.313	1	66	5,749	15			Watershed A4
Wa	ter Quality.gr	 w			Return I	Period: 2 Ye	ear	Friday, 05	/ 5 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 1

PR Watershed A1 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 3.626 cfs
Storm frequency	= 2 yrs	Time to peak	= 66 min
Time interval	= 1 min	Hyd. volume	= 4,833 cuft
Drainage area	= 1.320 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 1.25 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\8002405e1620c1&Project D	0at a∖_48e cipline∖Site Civil∖Storr

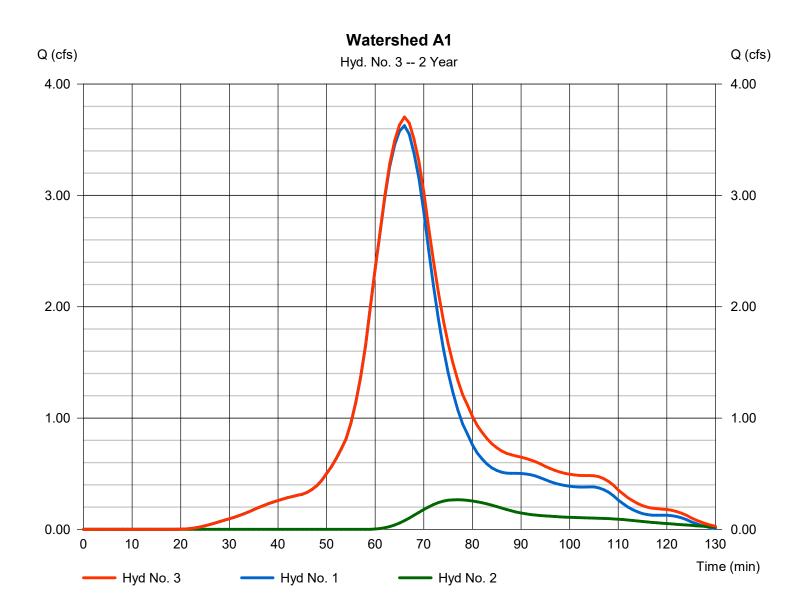

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 2

PR Watershed A1 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.266 cfs
Storm frequency	= 2 yrs	Time to peak	= 77 min
Time interval	= 1 min	Hyd. volume	= 515 cuft
Drainage area	= 0.810 ac	Curve number	= 80*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 16.00 min
Total precip.	= 1.25 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300265e1520toP rojectD	Data_ 436 cipline\Site Civil\Storm

* Composite (Area/CN) = [(0.790 x 80) + (0.020 x 91)] / 0.810

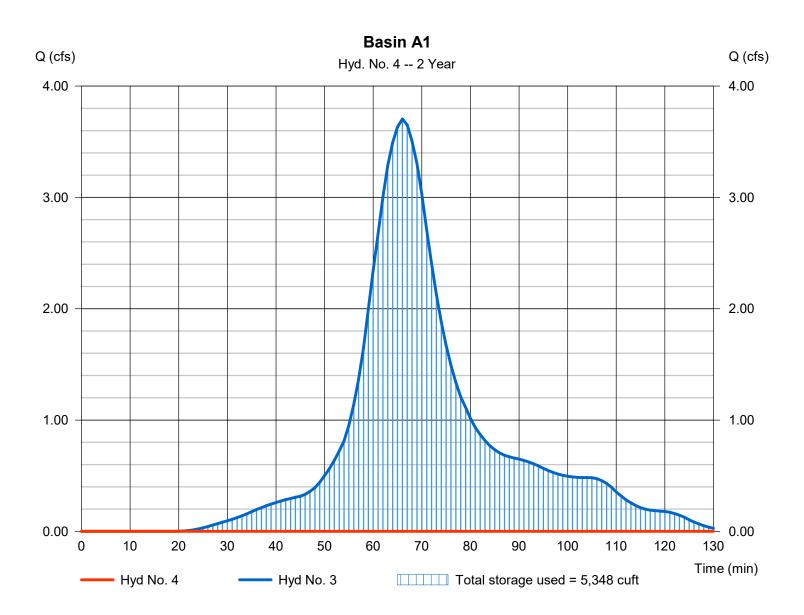

4

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 3

Watershed A1

Hydrograph type	= Combine	Peak discharge	= 3.704 cfs
Storm frequency	= 2 yrs	Time to peak	= 66 min
Time interval	= 1 min	Hyd. volume	= 5,348 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 2.130 ac
	., _		21100 40


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 4

Basin A1

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= n/a
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 3 - Watershed A1	Max. Elevation	= 47.91 ft
Reservoir name	= Basin A1	Max. Storage	= 5,348 cuft
Time interval Inflow hyd. No.	= 1 min = 3 - Watershed A1	Hyd. volume Max. Elevation	= 0 cuft = 47.91 ft

Storage Indication method used.

Pond Report

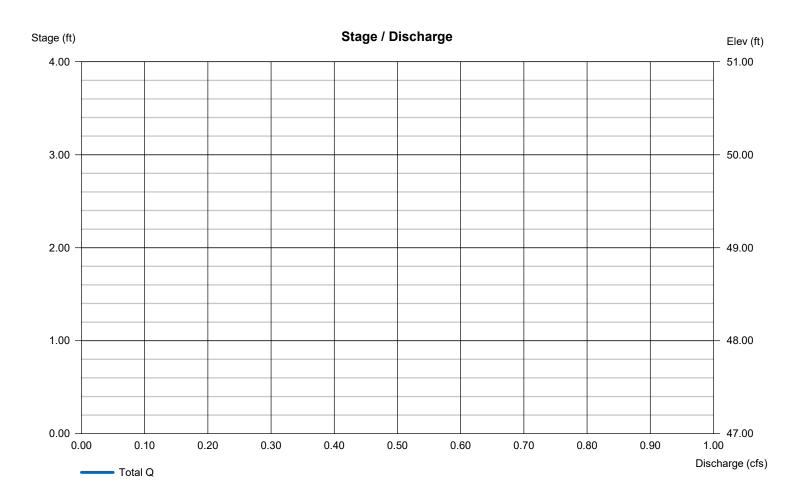
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 1 - Basin A1

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 47.00 ft

Stage / Storage Table

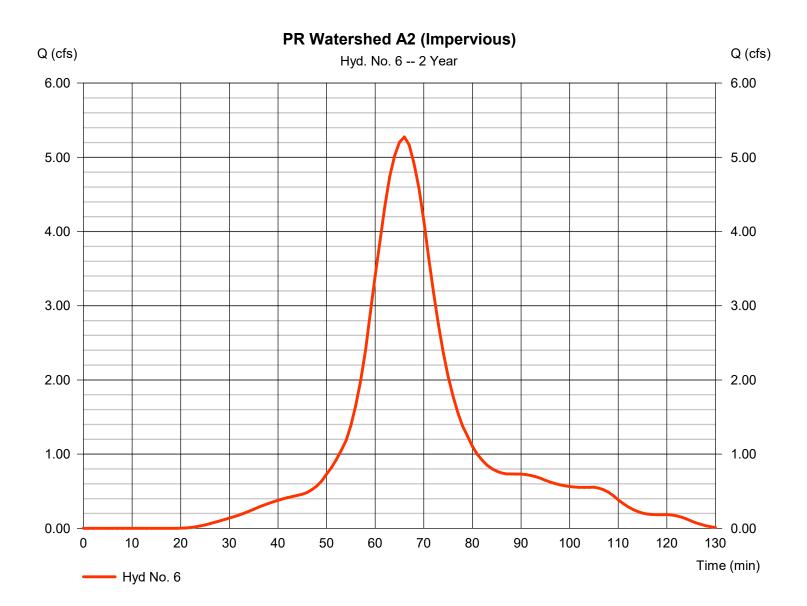

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	47.00	5,443	0	0
1.00	48.00	6,344	5,887	5,887
2.00	49.00	7,260	6,796	12,683
3.00	50.00	8,216	7,732	20,416
4.00	51.00	9,219	8,712	29,127

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	Inactive	0.00	0.00
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 0	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	=			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

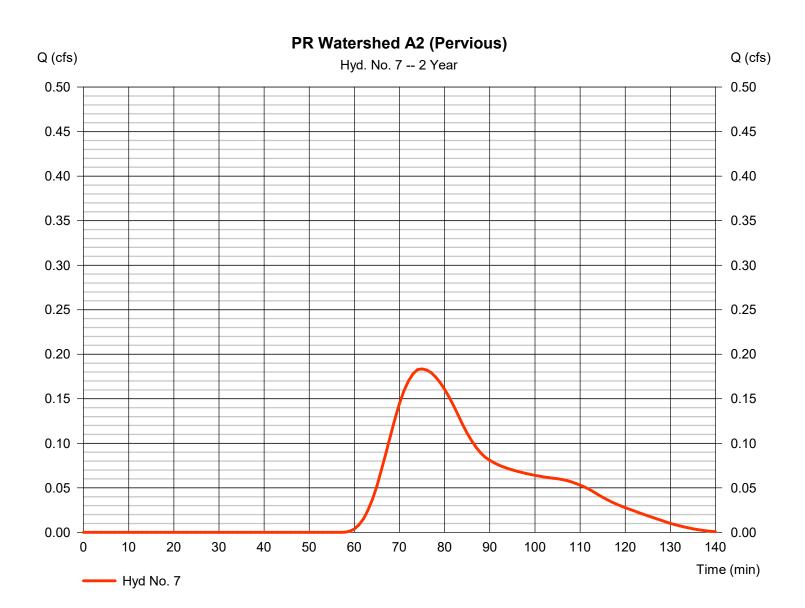


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 6

PR Watershed A2 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 5.275 cfs
Storm frequency	= 2 yrs	Time to peak	= 66 min
Time interval	= 1 min	Hyd. volume	= 7,030 cuft
Drainage area	= 1.920 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 1.25 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\800245e1620c1&Project D	Dat a∖_48e cipline∖Site Civil∖Storr

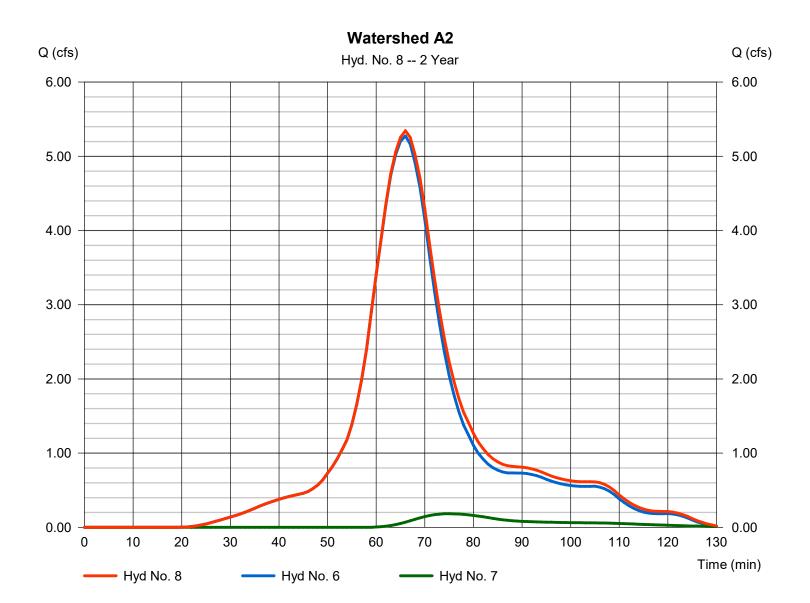

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 7

PR Watershed A2 (Pervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 0.183 cfs
Storm frequency	= 2 yrs	Time to peak	= 75 min
Time interval	= 1 min	Hyd. volume	= 326 cuft
Drainage area	= 0.460 ac	Curve number	= 81*
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 14.00 min
Total precip.	= 1.25 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 300265e152ctoP rojectD)at a∖_428s cipline∖Site Civil∖Storr

* Composite (Area/CN) = [(0.410 x 80) + (0.050 x 91)] / 0.460



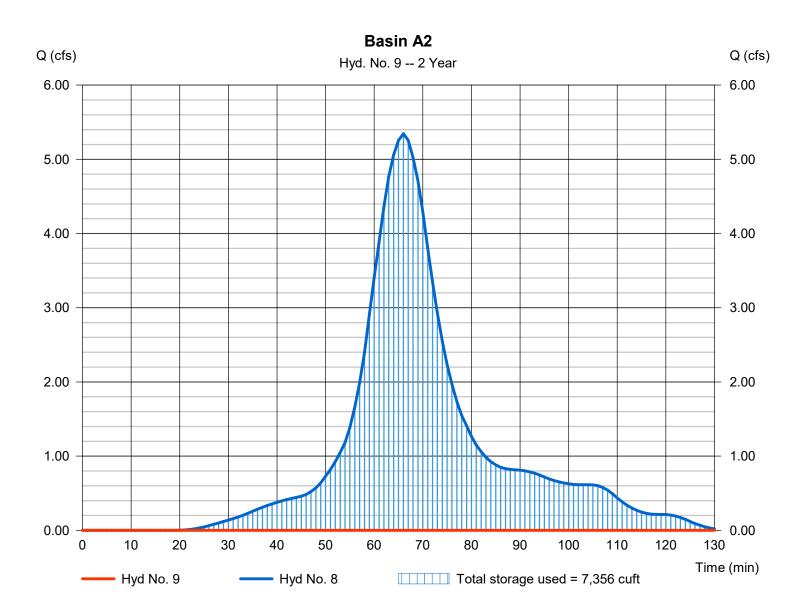
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 8

Watershed A2

Hydrograph type	 = Combine = 2 yrs = 1 min = 6, 7 	Peak discharge	= 5.345 cfs
Storm frequency		Time to peak	= 66 min
Time interval		Hyd. volume	= 7,356 cuft
Inflow hyds.		Contrib. drain. area	= 2.380 ac
innow nyao.	0,1		2.000 40

10


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 9

Basin A2

ť
cuft

Storage Indication method used.

Pond Report

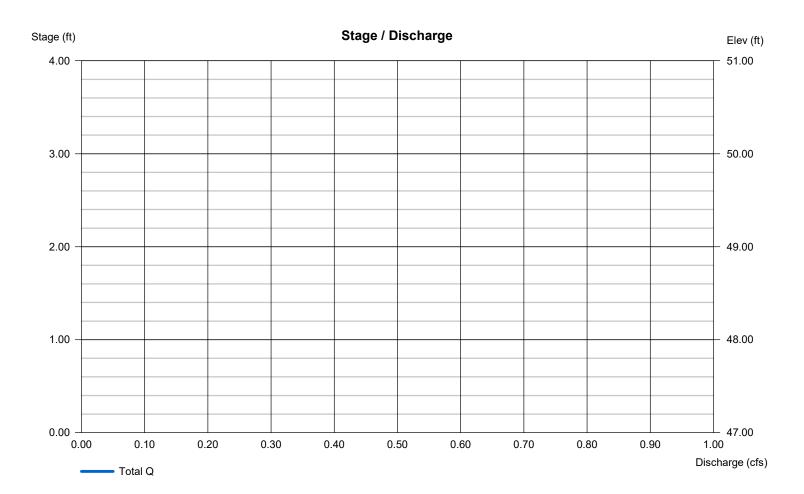
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 5 - Basin A2

Pond Data

Contours -User-defined contour areas. Conic method used for volume calculation. Begining Elevation = 47.00 ft

Stage / Storage Table

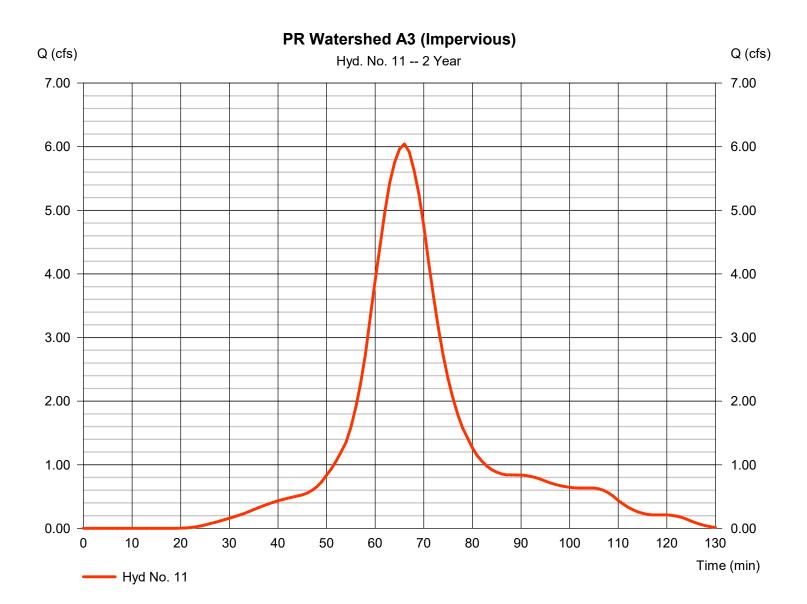

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	47.00	6,733	0	0	
1.00	48.00	7,912	7,314	7,314	
2.00	49.00	9,088	8,492	15,806	
3.00	50.00	10,268	9,671	25,477	
4.00	51.00	11,468	10,861	36,339	

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 0.00	0.00	Inactive	0.00	Crest Len (ft)	Inactive	0.00	0.00	0.00
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 0	0	1	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	= Rect			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Contour)		
Multi-Stage	= n/a	No	Yes	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

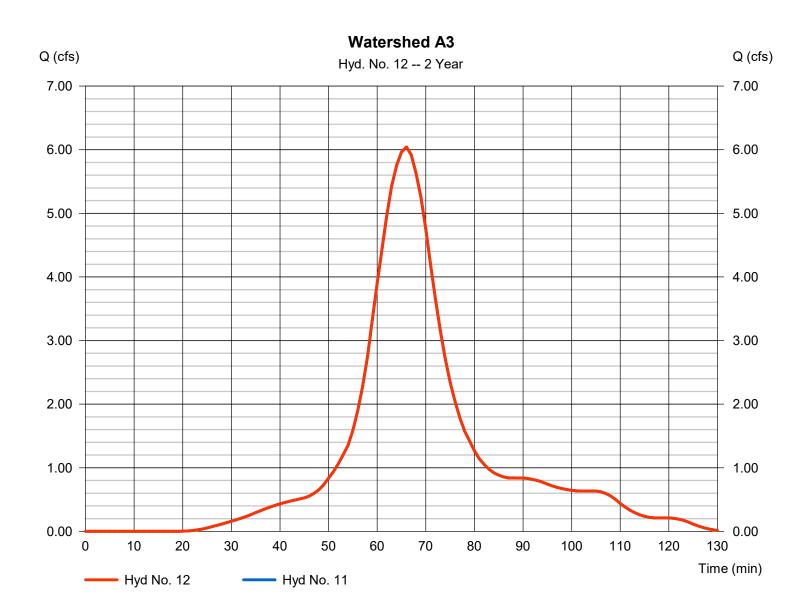

12

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 11

PR Watershed A3 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 6.044 cfs
Storm frequency	= 2 yrs	Time to peak	= 66 min
Time interval	= 1 min	Hyd. volume	= 8,056 cuft
Drainage area	= 2.200 ac	Curve number	= 98
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 1.25 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	PAR\data0\ 800205e1f20ctoP rojectD	Dat a∖_43i4 cipline∖Site Civil∖Storr



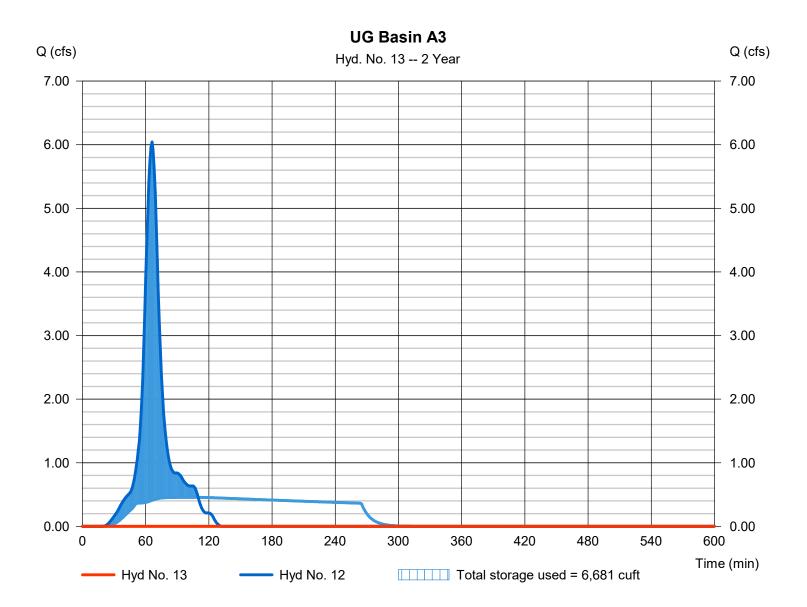
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 12

Watershed A3

Storm frequency= 2 yrsTime to peak= 66 minTime interval= 1 minHyd. volume= 8,056 cuftInflow hyds.= 11Contrib. drain. area= 2.200 ac			,	,
---	--	--	---	---

14


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 13

UG Basin A3

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= 532 min
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 12 - Watershed A3	Max. Elevation	= 49.67 ft
Reservoir name	= UG Detention A3	Max. Storage	= 6,681 cuft
		Max. eterage	0,001 001

Storage Indication method used. Exfiltration extracted from Outflow.

15

Pond Report

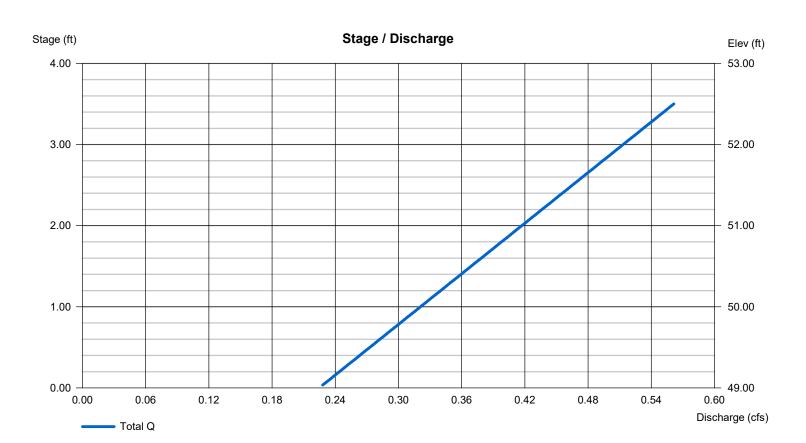
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 4 - UG Detention A3

Pond Data

UG Chambers -Invert elev. = 49.50 ft, Rise x Span = 2.50×4.25 ft, Barrel Len = 7.12 ft, No. Barrels = 235, Slope = 0.00%, Headers = Yes **Encasement -**Invert elev. = 49.00 ft, Width = 4.67 ft, Height = 3.50 ft, Voids = 40.00%

Stage / Storage Table

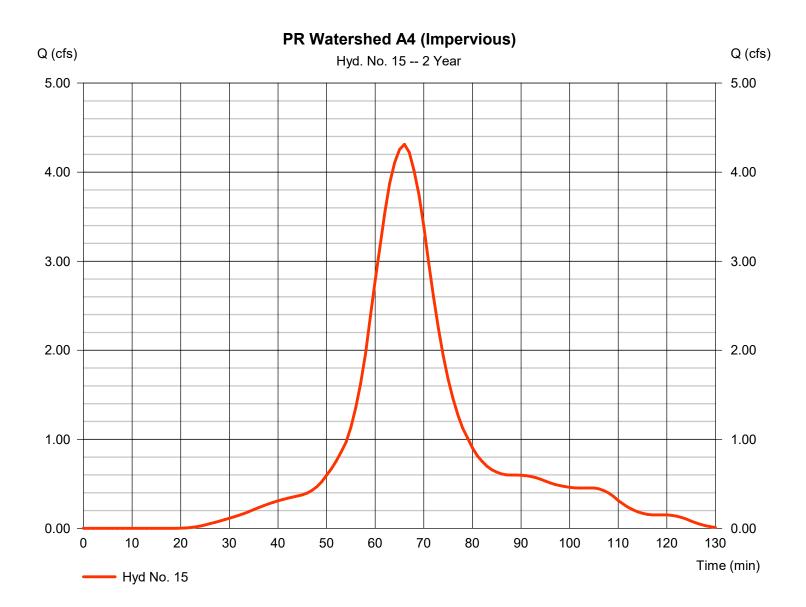

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	49.00	n/a	0	0
0.35	49.35	n/a	2,529	2,529
0.70	49.70	n/a	4,500	7,029
1.05	50.05	n/a	5,940	12,969
1.40	50.40	n/a	5,830	18,799
1.75	50.75	n/a	5,642	24,442
2.10	51.10	n/a	5,361	29,802
2.45	51.45	n/a	4,952	34,755
2.80	51.80	n/a	4,328	39,083
3.15	52.15	n/a	3,049	42,132
3.50	52.50	n/a	2,529	44,661

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 0	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	=			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.750 (by	/Wet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Weir Structures

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

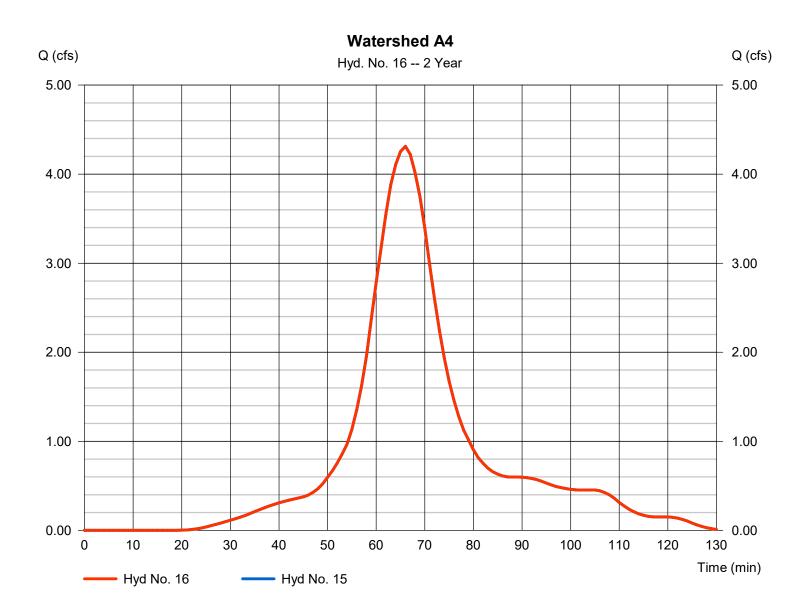


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 15

PR Watershed A4 (Impervious)

Hydrograph type	= SCS Runoff	Peak discharge	= 4.313 cfs
Storm frequency	= 2 yrs	Time to peak	= 66 min
Time interval	= 1 min	Hyd. volume	= 5,749 cuft
Drainage area	= 1.570 ac	Curve number	= 98
Basin Šlope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 8.00 min
Total precip.	= 1.25 in	Distribution	= Custom
Storm duration	= \\langan.com\data\P	AR\data0\ 800365e1f20ctoP roject D	0at a∖_48e cipline∖Site Civil∖Storr



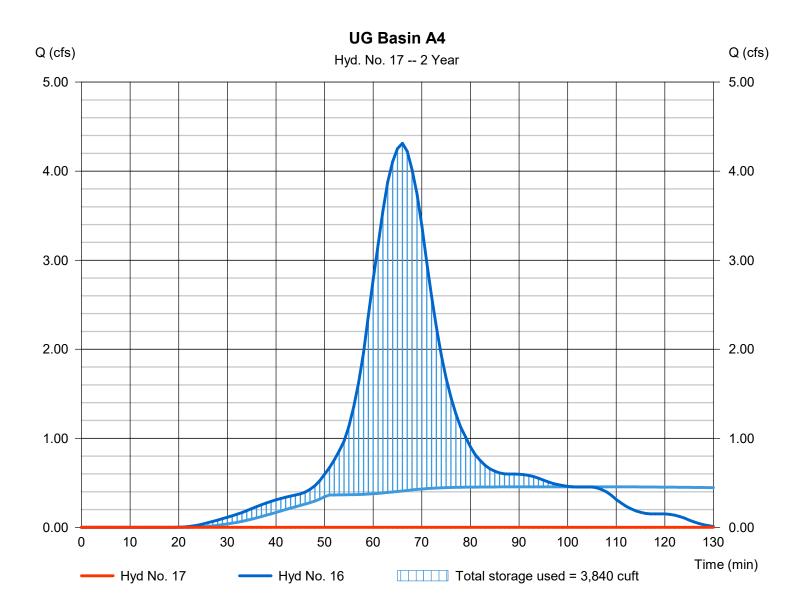
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 16

Watershed A4

Hydrograph type	= Combine	Peak discharge	= 4.313 cfs
Storm frequency	= 2 yrs	Time to peak	= 66 min
Time interval	= 1 min	Hyd. volume	= 5,749 cuft
Inflow hyds.	= 15	Contrib. drain. area	= 1.570 ac
inite in Figure 1			nor e de

18


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Hyd. No. 17

UG Basin A4

Hydrograph type	= Reservoir	Peak discharge	= 0.000 cfs
Storm frequency	= 2 yrs	Time to peak	= n/a
Time interval	= 1 min	Hyd. volume	= 0 cuft
Inflow hyd. No.	= 16 - Watershed A4	Max. Elevation	= 51.47 ft
Reservoir name	= UG Detention A4	Max. Storage	= 3,840 cuft

Storage Indication method used. Exfiltration extracted from Outflow.

Pond Report

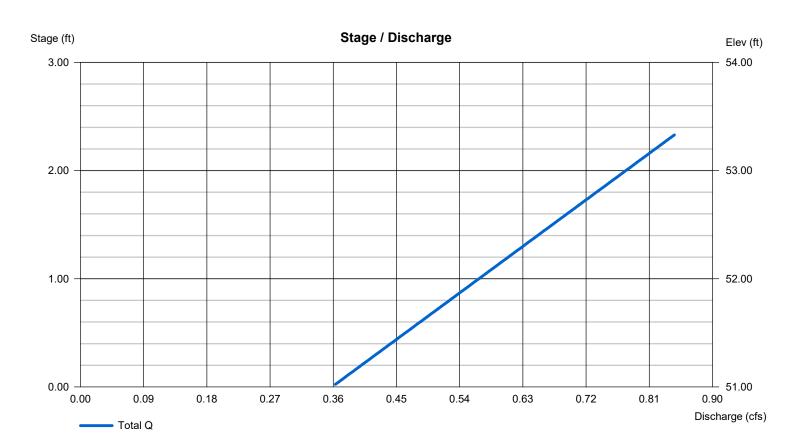
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2022

Pond No. 3 - UG Detention A4

Pond Data

UG Chambers -Invert elev. = 51.50 ft, Rise x Span = 1.33×2.83 ft, Barrel Len = 7.12 ft, No. Barrels = 429, Slope = 0.00%, Headers = Yes **Encasement -**Invert elev. = 51.00 ft, Width = 3.42 ft, Height = 2.33 ft, Voids = 40.00%

Stage / Storage Table


Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	51.00	n/a	0	0
0.23	51.23	n/a	1,909	1,909
0.47	51.47	n/a	1,909	3,818
0.70	51.70	n/a	3,925	7,744
0.93	51.93	n/a	4,208	11,951
1.17	52.17	n/a	4,064	16,015
1.40	52.40	n/a	3,821	19,836
1.63	52.63	n/a	3,430	23,266
1.86	52.86	n/a	2,630	25,896
2.10	53.10	n/a	1,909	27,805
2.33	53.33	n/a	1,909	29,715

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 0.00	0.00	0.00	0.00	Crest Len (ft)	= 0.00	0.00	0.00	0.00
Span (in)	= 0.00	0.00	0.00	0.00	Crest El. (ft)	= 0.00	0.00	0.00	0.00
No. Barrels	= 0	0	0	0	Weir Coeff.	= 3.33	3.33	3.33	3.33
Invert El. (ft)	= 0.00	0.00	0.00	0.00	Weir Type	=			
Length (ft)	= 0.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 1.000 (by	/Wet area)		
Multi-Stage	= n/a	No	No	No	TW Elev. (ft)	= 0.00			

Weir Structures

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

20

King Arthur Court Warehouse

North Brunswick, NJ 5/1/23

Sizing Basis:

Filterra High Capacity biofiltration system has received final certification from the NJDEP for 80% TSS removal. Per the NJDEP, Filterra HC is considered a Green Infrastructure (GI) MTD. The sizing for the Filterra HC system under NJDEP regulations is based on the methodology outlined in Chapter 5 of the NJDEP BMP Manual. The NRCS method is utilized to determine a water quality flow rate for the drainage area in question. To validate the sizing, the parameters below were assumed.

Design Parameters:

Design Storm =NJDEP Water Quality Design Storm (1.25-inch/2-hour storm event)Filterra HC Media Flow Rate =300 inches/hourTime of Concentration =2 minutesAllowable Ponding in Filterra =9"

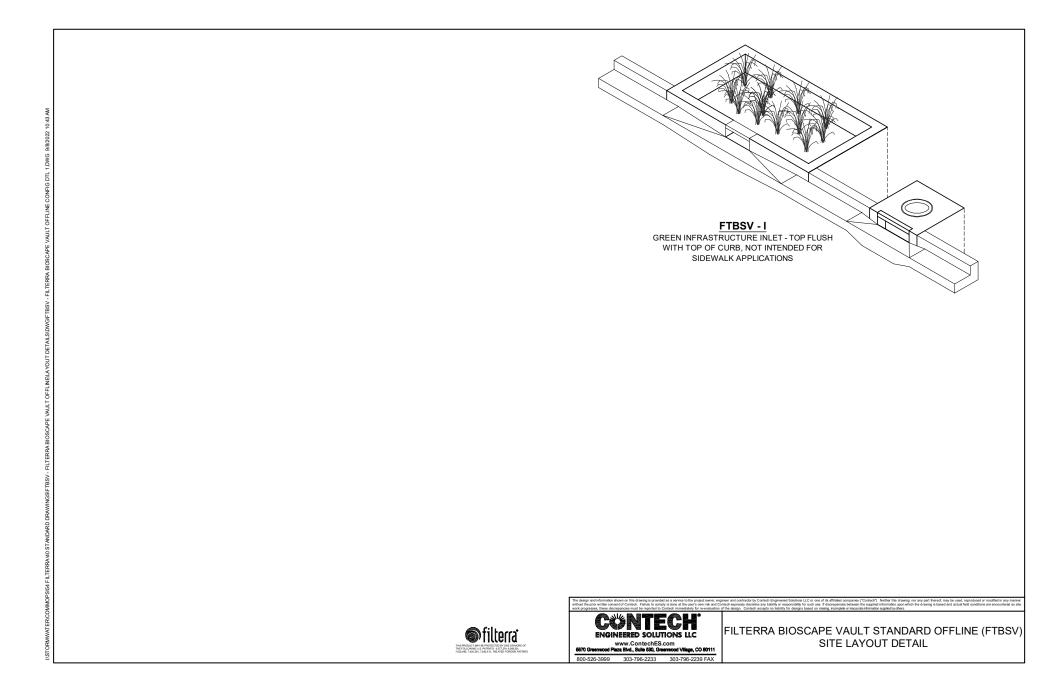
Design Summary:

Utilizing NRCS Method and HydroCAD software, a hydrograph can be derived to represent the design storm. As seen in the provided HydroCAD report, the WQ flow is routed to an appropriately sized Filterra unit. Since the Filterra system can provide up to 9" of ponding, some flow attenuation is possible. The Filterra system is able to accommodate a portion of the water quality volume in the head space above the media and release it at the system's NJDEP certified maximum treatment flow rate.

Site Designation	Impervious Drainage Area (ac)	Pervious Drainage Area (ac)	Filterra HC Model Analyzed
#1	0.314	0.020	(2) 10'x6' Offline Filterra HC Bioscape Vault
#2	0.309	0.022	(2) 10'x6' Offline Filterra HC Bioscape Vault
#3	0.302	0.040	(2) 10'x6' Offline Filterra HC Bioscape Vault

Thank you for the opportunity to present this to you and your client. Please do not hesitate to contact me should you have any additional questions.

Sincerely,

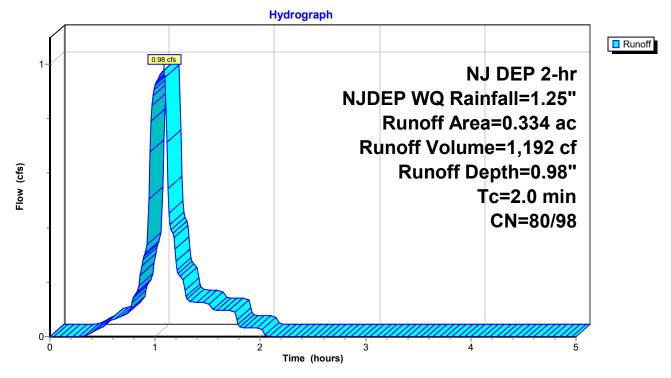

Taylor Murdock Stormwater Design Engineer Contech Engineered Solutions, LLC.

800-526-3999 303-796-2233 303-796-2239 FAX

CONFIGURATION DETAIL

King Arthur Court Warehouse (5-1-23)

Prepared by Contech Engineered Solutions HydroCAD® 10.20-2f s/n 00447 © 2022 HydroCAD Software Solutions LLC


Summary for Subcatchment 1S: MTD-1 DA

Runoff = 0.98 cfs @ 1.08 hrs, Volume= Routed to Pond 1P : (2) Filterra 6x10/10x6 1,192 cf, Depth= 0.98"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-5.00 hrs, dt= 0.01 hrs NJ DEP 2-hr NJDEP WQ Rainfall=1.25"

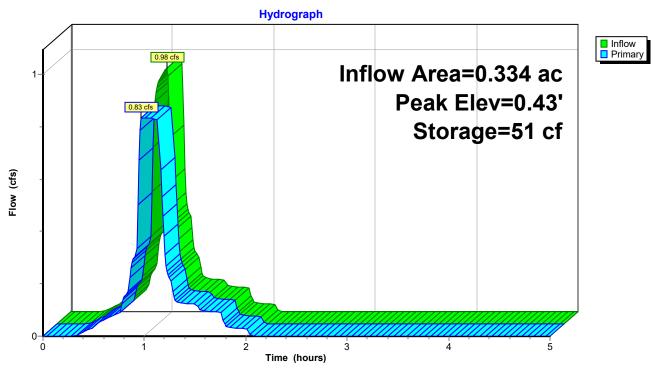
	Area ((ac)	CN	Desc	cription		
*	0.3	314	98				
*	0.0	020	80				
	0.3	334	97	Weig	ghted Aver	age	
	0.0	020	80	5.99	% Perviou	s Ārea	
	0.3	314	98	94.0	1% Imperv	ious Area	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	2.0						Direct Entry,

Subcatchment 1S: MTD-1 DA

Prepared by Contech Engineered Solutions HydroCAD® 10.20-2f s/n 00447 © 2022 HydroCAD Software Solutions LLC

Summary for Pond 1P: (2) Filterra 6x10/10x6

Inflow Area =	0.33	4 ac, 94.01% Impervious,	Inflow Depth = 0.98"	for NJDEP WQ event
Inflow =	0.98 cfs @	1.08 hrs, Volume=	1,192 cf	
Outflow =	0.83 cfs @	0.97 hrs, Volume=	1,222 cf, Atten= 15	5%, Lag= 0.0 min
Primary =	0.83 cfs @	0.97 hrs, Volume=	1,222 cf	


Routing by Stor-Ind method, Time Span= 0.00-5.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 0.43' @ 1.10 hrs Surf.Area= 0.003 ac Storage= 51 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.3 min (67.0 - 66.7)

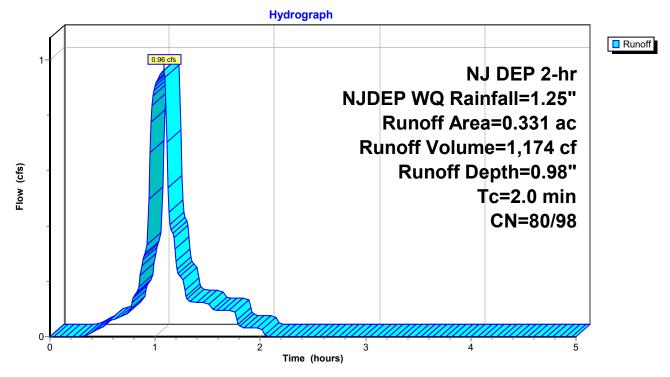
Volume	Invert	Avail.Storage	Storage Description
#1	0.00'	90 cf	6.00'W x 10.00'L x 0.75'H Prismatoid × 2
Device	Routing	Invert Out	let Devices
#1	Primary	0.00' 300	.000 in/hr Exfiltration over Surface area

Primary OutFlow Max=0.83 cfs @ 0.97 hrs HW=0.01' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.83 cfs @ 0.01 fps)

Pond 1P: (2) Filterra 6x10/10x6

King Arthur Court Warehouse (5-1-23)

Prepared by Contech Engineered Solutions HydroCAD® 10.20-2f s/n 00447 © 2022 HydroCAD Software Solutions LLC


Summary for Subcatchment 2S: MTD-2 DA

Runoff = 0.96 cfs @ 1.08 hrs, Volume= Routed to Pond 2P : (2) Filterra 6x10/10x6 1,174 cf, Depth= 0.98"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-5.00 hrs, dt= 0.01 hrs NJ DEP 2-hr NJDEP WQ Rainfall=1.25"

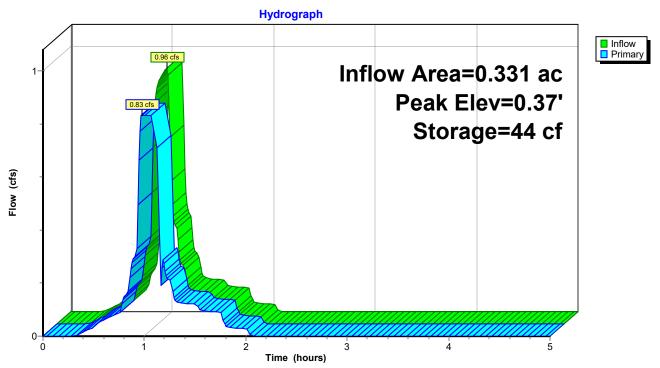
	Area (ac)	CN	Desc	cription		
*	0.3	309	98				
*	0.0)22	80				
	0.3	331	97	Weig	ghted Aver	age	
	0.0)22	80	6.65	% Perviou	s Ārea	
	0.3	309	98	93.3	5% Imperv	vious Area	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	2.0						Direct Entry,
	2.0						

Subcatchment 2S: MTD-2 DA

Prepared by Contech Engineered Solutions HydroCAD® 10.20-2f s/n 00447 © 2022 HydroCAD Software Solutions LLC

Summary for Pond 2P: (2) Filterra 6x10/10x6

Inflow Are	ea =	0.33	1 ac, 93.35% Impervious,	Inflow Depth = 0.98"	for NJDEP WQ event
Inflow	=	0.96 cfs @	1.08 hrs, Volume=	1,174 cf	
Outflow	=	0.83 cfs @	0.98 hrs, Volume=	1,146 cf, Atten= 14	%, Lag= 0.0 min
Primary	=	0.83 cfs @	0.98 hrs, Volume=	1,146 cf	


Routing by Stor-Ind method, Time Span= 0.00-5.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 0.37' @ 1.10 hrs Surf.Area= 0.003 ac Storage= 44 cf

Plug-Flow detention time= 1.3 min calculated for 1,146 cf (98% of inflow) Center-of-Mass det. time= 0.1 min (66.8 - 66.7)

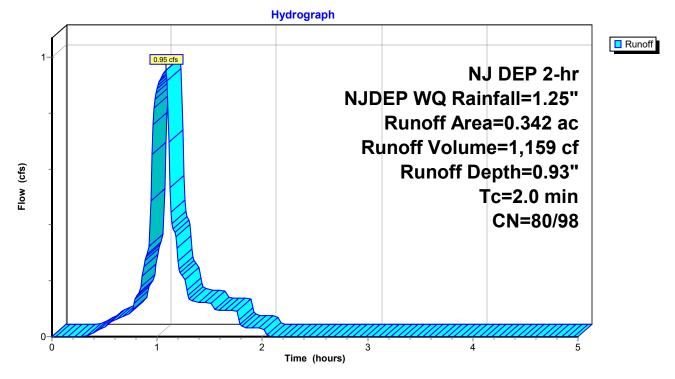
Volume	Invert	Avail.Storage	Storage Description
#1	0.00'	90 cf	6.00'W x 10.00'L x 0.75'H Prismatoid x 2
Device	Routing	Invert Out	let Devices
#1	Primary	0.00' 300	.000 in/hr Exfiltration over Surface area

Primary OutFlow Max=0.83 cfs @ 0.98 hrs HW=0.01' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.83 cfs @ 0.01 fps)

Pond 2P: (2) Filterra 6x10/10x6

King Arthur Court Warehouse (5-1-23)

Prepared by Contech Engineered Solutions HydroCAD® 10.20-2f s/n 00447 © 2022 HydroCAD Software Solutions LLC


Summary for Subcatchment 3S: MTD-3 DA

Runoff = 0.95 cfs @ 1.08 hrs, Volume= Routed to Pond 3P : (2) Filterra 6x10/10x6 1,159 cf, Depth= 0.93"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-5.00 hrs, dt= 0.01 hrs NJ DEP 2-hr NJDEP WQ Rainfall=1.25"

	Area ((ac)	CN	Desc	cription		
*	0.3	302	98				
*	0.	040	80				
	0.3	342	96	Weig	ghted Aver	age	
	0.	040	80		0% Pervio		
	0.3	302	98	88.3	0% Imperv	ious Area/	
	Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	2.0						Direct Entry,

Subcatchment 3S: MTD-3 DA

King Arthur Court Warehouse (5-1-23)

Prepared by Contech Engineered Solutions HydroCAD® 10.20-2f s/n 00447 © 2022 HydroCAD Software Solutions LLC

Summary for Pond 3P: (2) Filterra 6x10/10x6

Inflow Are	ea =	0.34	2 ac, 88.30% Impervious,	Inflow Depth = 0.93" for NJDEP WQ event	
Inflow	=	0.95 cfs @	1.08 hrs, Volume=	1,159 cf	
Outflow	=	0.83 cfs @	0.98 hrs, Volume=	1,189 cf, Atten= 13%, Lag= 0.0 min	
Primary	=	0.83 cfs @	0.98 hrs, Volume=	1,189 cf	
-		-			

Routing by Stor-Ind method, Time Span= 0.00-5.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 0.31' @ 1.10 hrs Surf.Area= 0.003 ac Storage= 37 cf

Plug-Flow detention time= (not calculated: outflow precedes inflow) Center-of-Mass det. time= 0.2 min (67.1 - 66.8)

Volume	Invert	Avail.Storage	Storage Description
#1	0.00'	90 cf	6.00'W x 10.00'L x 0.75'H Prismatoid × 2
Device	Routing	Invert Out	let Devices
#1	Primary	0.00' 300	.000 in/hr Exfiltration over Surface area

Primary OutFlow Max=0.83 cfs @ 0.98 hrs HW=0.01' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 0.83 cfs @ 0.01 fps)

Pond 3P: (2) Filterra 6x10/10x6

State of New Jersey Department of Environmental Protection

DEPARTMENT OF ENVIRONMENTAL PROTECTION

DIVISION OF WATER QUALITY Bureau of Stormwater Permitting 401 East State Street P.O. Box 420 Mail Code 401-02B Trenton, NJ 08625-0420 Tel. (609) 633-7021 • Fax (609) 777-0432 www.nj.gov/dep/dwq/bnpc_home.htm

SHAWN M. LATOURETTE Acting Commissioner

February 12, 2021

Derek M. Berg Director – Stormwater Regulatory Management - East Contech Engineered Solutions LLC 71 US Route 1, Suite F Scarborough, ME 04074

Re: MTD Lab Certification Filterra[®] HC Bioretention System Off-line Installation Approved

TSS Removal Rate 80%

Dear Mr. Berg:

The Stormwater Management rules under N.J.A.C. 7:8-5.5(b) and 5.7(c) allow the use of manufactured treatment devices (MTDs) for compliance with the design and performance standards at N.J.A.C. 7:8-5 if the pollutant removal rates have been verified by the New Jersey Corporation for Advanced Technology (NJCAT) and have been certified by the New Jersey Department of Environmental Protection (NJDEP). Contech Engineered Solutions LLC has requested a Laboratory Certification for the Filterra[®] HC Bioretention System (Filterra[®] HC.)

The project falls under the "Procedure for Obtaining Verification of a Stormwater Manufactured Treatment Device from New Jersey Corporation for Advance Technology" dated January 25, 2013. The applicable protocol is the "New Jersey Department of Environmental Protection Laboratory Protocol to Assess Total Suspended Solids Removal by a Filtration Manufactured Treatment Device" dated January 25, 2013.

NJCAT verification documents submitted to the NJDEP indicate that the requirements of the aforementioned protocol have been met or exceeded. The NJCAT letter also included a recommended certification TSS removal rate and the required maintenance plan. The NJCAT Verification Report with the Verification Appendix (dated January 2021) for this device is published online at <u>http://www.njcat.org/uploads/newDocs/NJCATFilterraTechnology</u> VerificationReportFinal._.pdf.

PHILIP D. MURPHY Governor

SHEILA Y. OLIVER Lt. Governor

The NJDEP certifies the use of the Filterra[®] HC stormwater treatment unit by Contech Engineered Solutions LLC at a TSS removal rate of 80% when designed, operated, and maintained in accordance with the information provided in the Verification Appendix and the following conditions:

- 1. The maximum treatment flow rate (MTFR) for the manufactured treatment device (MTD) is calculated using the New Jersey Water Quality Design Storm (1.25 inches in 2 hrs) in N.J.A.C. 7:8-5.5. The MTFR is calculated based on a verified loading rate of 3.12 gpm/ft² of effective filtration treatment area.
- 2. The Filterra[®] HC stormwater treatment unit shall be installed using the same configuration reviewed by NJCAT, and sized in accordance with the criteria specified in item 7 below.
- 3. This device cannot be used in series with another MTD or a media filter (such as a sand filter) to achieve an enhanced removal rate for total suspended solids (TSS) removal under N.J.A.C. 7:8-5.5.
- 4. Additional design criteria for MTDs can be found in the New Jersey Stormwater Best Management Practices (NJ Stormwater BMP) Manual, which can be found online at <u>www.njstormwater.org</u>.
- 5. The maintenance plan for a site using this device shall incorporate, at a minimum, the maintenance requirements for the Filterra[®] HC. A copy of the maintenance plan is attached to this certification. However, it is recommended to review the maintenance website at https://www.conteches.com/Portals/0/Documents/Maintenance%20Guides/Filterra%20H C%20OM%20Packet.pdf for any changes to the maintenance requirements.
- 6. For an MTD to be considered "green infrastructure" (GI) in accordance with the March 2, 2020 amendments to the Stormwater Management rules at N.J.A.C. 7:8, the MTD must meet the GI definition noted at amended N.J.A.C. 7:8-1.2. Specifically, the MTD shall (1) treat stormwater runoff through infiltration into subsoil; and/or (2) treat stormwater runoff through filtration or soil; or (3) store stormwater runoff for reuse.

The Filterra[®] HC filters stormwater runoff through an engineered biofiltration soil media and, thus, meets the definition of GI. Filterra[®] HC can be configured with or without a precast vault. Installations that will not include a precast vault will additionally need to comply the NJDEP Stormwater BMP Manual conditions regarding separation from the seasonal high water table and, if infiltration is proposed as an outlet, minimum vertical saturated hydraulic conductivity of the subsoil. Installations without a precast vault that do not rely on infiltration are required to maintain at least a one-foot separation from the seasonal high water table measured from the lowest point of the system. Installations without a precast vault that utilize infiltration are required to have the most hydraulically restrictive soil layer below the MTD meet the minimum tested vertical saturated hydraulic conductivity of one inch per hour and have at least two feet of separation from the seasonal high water table measured from the lowest point of the system. 7. Sizing Requirement:

The example below demonstrates the sizing procedure for the Filterra[®] HC:

Example: A 0.25-acre impervious site is to be treated to 80% TSS removal using the Filterra[®] HC. The impervious site runoff (Q) based on the New Jersey Water Quality Design Storm was determined to be 0.79 cfs.

The selection of the appropriate model of Filterra[®] HC is based upon both the maximum inflow drainage area and the MTFR. It is necessary to calculate the required model using both methods and to use the largest model determined by the two methods.

Inflow Drainage Area Evaluation:

The drainage area to the Filterra[®] HC in this example is 0.25 acres. Included in Table 1 below, all of the Filterra[®] HC models are designed with a maximum allowable drainage area greater than 0.25 acres. Specifically, the Filterra[®] HC with a 4'x4' media bay and a maximum allowable drainage area of 0.40 acres would be the smallest model able to treat runoff without exceeding the maximum allowable drainage area.

Maximum Treatment Flow Rate (MTFR) Evaluation:

The site runoff (Q) was based on the following: time of concentration = 10 minutes i = 3.2 in/hr (page 5-8, Fig. 5-3 of the NJ Stormwater BMP Manual) c = 0.99 (runoff coefficient for impervious) $Q = ciA = 0.99 \times 3.2 \times 0.25 = 0.79$ cfs

Given the site runoff is 0.79 cfs and based on the MTFR's listed in Table 1 below, the Filterra[®] HC with a 16'x8' media bay and an MTFR of 0.889 cfs would be the smallest model that could be used to treat the impervious area without exceeding the MTFR. If using more than one unit for treating runoff, the units should be configured such that the flowrate to each unit does not exceed the design MTFR for each unit and ensuring the entire 0.25 acre area is treated.

The MTFR evaluation results will be used since that method results in the highest minimum configuration determined by the two methods.

The sizing table corresponding to the available system models is noted below:

	Available Filterra® Media Bay Sizes (feet)	Effective Filtration Treatment Area (ft ²)	Treatment Flow Rate (cfs)	Maximum Allowable Drainage Area (ac)		
	4x4	16	<mark>0.111</mark>	0.40		
	4x6 or 6x4	24	0.167	0.60		
ts	4.5x7.83 or 7.83x4.5 (Nominal 4x8/8x4)	35.24	0.245	0.89		
Standard Configuration Filterra and Filterra Biosape Vaults	<u>6</u> x6	36	0.250	0.91		
ation	6x8 or 8x6	48	0.333	1.21		
Bios	6x10 or 10x6	60	0.417	1.51		
Standard Configuration a and Filterra Biosape /	6x12 or 12x6	72	0.500	1.81		
dard d Fil	7x13 or 13x7	91	0.632	2.29		
Stan a an	14x8	112	0.778	2.82		
ilten	16x8	128	0.889	3.22		
H	18x8	144	1.000	3.62		
	20x8	160	1.111	4.03		
	22x8	176	1.222	4.43		
	4x4	16	0.111	0.40		
	4.5x5.83 (Nominal 4x6)	26.24	0.182	0.66		
	6x4	24	0.167	0.60		
aults	6x6	36	0.250	0.91		
Dive Tra V	6x8	48	0.333	1.21		
Peak Diversion Filterra Vaults	6x10 or 10x6	60	0.417	1.51		
-	7x10	70	0.486	1.76		
	8x10.5	84	0.583	2.11		
	8x12.5	100	0.694	2.52		
	Custom and/or Filterra Bioscape	Media Area in ft ²	0.00694 * (Media Area in ft ²)	0.0252 * (Media Area in ft		

Table 1. Filterra[®] HC MTFRs and Maximum Allowable Drainage Areas

Be advised a detailed maintenance plan is mandatory for any project with a Stormwater BMP subject to the Stormwater Management rules, N.J.A.C. 7:8. The plan must include all of the items identified in the Stormwater Management rules, N.J.A.C. 7:8-5.8. Such items include, but are not limited to, the list of inspection and maintenance equipment and tools, specific corrective and preventative maintenance tasks, indication of problems in the system, and training of maintenance personnel. Additional information can be found in Chapter 8: Maintenance and Retrofit of Stormwater Management Measures.

If you have any questions regarding the above information, please contact me at (609) 633-7021.

Sincerely,

Labriel Mahon

Gabriel Mahon, Chief Bureau of Stormwater Permitting

Attachment: Maintenance Plan

cc: Chron File

Richard Magee, NJCAT Vince Mazzei, NJDEP – Water & Land Management Nancy Kempel, NJDEP – BSTP Keith Stampfel, NJDEP – DLRP Dennis Contois, NJDEP – DLRP

APPENDIX D

Groundwater Recharge Analysis

LANGAN

New Jersey Groundwater		Annual Groundwater Red	charge A	nalysis	(based on G	SR-32)			Project Name: Project King Arthur				
Recharge Spreadsh Version 2.0	e neet	Select Township \downarrow	Average Annual P (in)	Climatic Factor					Description:				
November	2003	MIDDLESEX CO., NORTH BRUNSWICK TWP	1.48					Analysis Date:	04/26/23				
		Pre-Developed Cond					Post-Develope	d Conditions					
Land Segment	Area (acres)	TR-55 Land Cover	Soil	Annual Recharge (in)	Annual Recharge (cu.ft)		Land Segment	Area (acres)	TR-55 Land Cover	Soil	Annual Recharge (in)	Annual Recharge (cu.ft)	
1	5.42	Open space	Keyport	12.7	250,237		1	2.76	Open space	Keyport	12.7	127,427	
2	4.43	Impervious areas	Keyport	0.0	-		2	7.96	Impervious areas	Keyport	0.0	-	
3	0.94	Woods	Keyport	12.5	42,777		3	0.02	Woods	Keyport	12.5	910	
4	0.05	Woods	Klinesville	14.6	2,657		4	0.04	Open space	Klinesville	14.2	2,060	
5	0.15	Gravel, dirt	Keyport	7.2	3,921		5	0.21	Gravel, dirt	Keyport	7.2	5,489	
6	0						6	0					
7	0						7	0					
8	0						8	0					
9	0						9	0					
10	0						10	0					
11	0						11	0					
12	0						12	0					
13	0						13	0					
14	0						14	0					
15	0						15	0					
Total =	11.0			Total Annual Recharge (in)	Total Annual Recharge (cu-ft)		Total =	11.0			Total Annual Recharge (in)	Total Annual Recharge (cu.ft)	
				7.5	299,591		Annual	Recharg	ge Requirements Calculat	tion ↓	3.4	135,886	
rocedure	to fill the	Pre-Development and Post-Development Con	ditions Tables			% of Pre-Developed Annual Recharge to Preserve = 100%					Total Impervious Area (sq.ft)	346,738	
or each land	segment, fir	st enter the area, then select TR-55 Land Cover, then select	Soil. Start from the	top of the table		Post-D	evelopm	ent Ann	ual Recharge Deficit=	163,705	(cubic feet)		
nd proceed d	lownward. Do	on't leave blank rows (with A=0) in between your segment en	tries. Rows with A=0	will not be		Recha	rge Effici	ency Pa	rameters Calculations (ar	rea averages)			
splayed or u	sed in calcul	ations. For impervious areas outside of standard lots select	"Impervious Areas" a	s the Land Cove	r.	RWC=	2.95	(in)	DRWC=	0.01	(in)		
oil type for in	npervious ar	eas are only required if an infiltration facility will be built withi	n these areas.			ERWC =	0.77	(in)	EDRWC=	0.00	(in)		

Project Name		Description			Analysis Date BMP or LID		ID Type				
Project King Arthu	r	0			04/26/23						
Recharge BMP Input Pa	rameters			Root Zone Water capacity Calculated Parameters				Recharge Design Parameters			
Parameter	Symbol	<u>Value</u>	<u>Unit</u>	Parameter	<u>Symbol</u>	<u>Value</u>	Unit	Parameter	Symbol	<u>Value</u>	<u>Unit</u>
BMP Area	ABMP	9117.0	sq.ft	Empty Portion of RWC under Post-D Natural Recharge	ERWC	1.20	in	Inches of Runoff to capture	Qdesign	0.46	in
BMP Effective Depth, this is the design variable	dBMP	4.8	in	ERWC Modified to consider dEXC	EDRWC	0.00	in	Inches of Rainfall to capture	Pdesign	0.58	in
Upper level of the BMP surface (negative if above ground)	dBMPu	18.0	in	Empty Portion of RWC under Infilt. BMP	RERWC	0.00	in	Recharge Provided Avg. over Imp. Area		22.5	in
Depth of lower surface of BMP, must be>=dBMPu	dEXC	60.0	in					Runoff Captured Avg. over imp. Area		22.5	in
Post-development Land Segment Location of BMP, Input Zero if Location is distributed or undetermined	SegBMP	1	unitless								
			BMP Calculated Size	Parameter	s		CALCULATION C	HECK MES	SAGES		
				ABMP/Aimp	Aratio	0.10	unitless	Volume Balance->		em to satis	fy Ann
D	Deskaus	- W/		BMP Volume	VBMP	3,647	cu.ft	dBMP Check>			
Parameters from Annua Post-D Deficit Recharge (or desired recharge volume)	Vdef	e worksneet	cu.ft	System Performance Annual BMP Recharge Volume	Calculated	179,145	cu.ft	dEXC Check> BMP Location>			
Post-D Impervious Area (or target Impervious Area)	Aimp	95,728	sq.ft	Avg BMP Recharge Efficiency		100.0%	Represents % Infiltration Recharged	OTHER NOTES			
Root Zone Water Capacity	RWC	4.62	in	%Rainfall became Runoff		77.9%	%	Pdesign is accurate only afte	r BMP dimension	s are updated	to make
RWC Modified to consider dEXC	DRWC	0.00	in	%Runoff Infiltrated		62.8%	%	of BMP infiltration prior to filli	ng and the area o	ccupied by BN	1P are igi
Climatic Factor	C-factor	1.48	no units	%Runoff Recharged		17.3%	%	sensetive to dBMP, make su	re dBMP selected	l is small enou	gh for BN
Average Annual P	Pavg	45.9	in	%Rainfall Recharged		13.5%	%	Segment Location of BMP if	you select "imper	vious areas" R'	WC will b
Recharge Requirement over Imp. Area dr 0.0 in											

How to solve for different recharge volumes: By default the spreadsheet assigns the values of total deficit recharge volume "Vdef" and total proposed impervious area "Aimp" from the "Annual Recharge" sheet to "Vdef" and "Aimp" on this page. This allows solution for a single BMP to handle the entire recharge requirement assuming the runoff from entire impervious area is available to the BMP. To solve for a smaller BMP or a LID-IMP to recharge only part of the recharge requirement, set Vdef to your target value and Aimp to impervious area directly connected to your infiltration facility and then solve for ABMP or

dBMP. To go back to the default configuration clik the "Default Vdef & Aimp" button.

Project Name Description				Analysis	Date	BMP or L	ID Type				
Project King Arthu	r	0			02/21/23						
Recharge BMP Input Parameters			Root Zone Water cap	acity Calcu	lated Param	eters	Recharge Design Pa	Recharge Design Parameters			
Parameter	Symbol	<u>Value</u>	Unit	Parameter				Parameter	<u>Symbol</u>	<u>Value</u>	Unit
BMP Area	ABMP	10599.0	sq.ft	Empty Portion of RWC under Post-D Natural Recharge	ERWC	1.20	in	Inches of Runoff to capture	Qdesign	0.39	in
BMP Effective Depth, this is the design variable	dBMP	2.4	in	ERWC Modified to consider dEXC	EDRWC	0.00	in	Inches of Rainfall to capture	Pdesign	0.49	in
Jpper level of the BMP surface (negative if above ground)	dBMPu	18.0	in	Empty Portion of RWC under Infilt. BMP	RERWC	0.00	in	Recharge Provided Avg. over Imp. Area		20.0	in
Depth of lower surface of BMP, must be>=dBMPu	dEXC	60.0	in					Runoff Captured Avg. over imp. Area		20.0	in
Post-development Land Segment Location of BMP , Input Zero if Location is distributed or undetermined											
				BMP Calculated Size Parameters				CALCULATION CHECK MESSAGES			
				ABMP/Aimp Aratio 0.16 unitless				Volume Balance-> Solve Problem to satisfy Annual Recharge			
Parameters from Annua	Dechang	Warkshaat		BMP Volume	MP Volume VBMP 2,120 cu.ft dBMP Check> OK vstem Performance Calculated Parameters dEXC Check> OK						
Post-D Deficit Recharge or desired recharge volume)	Vdef	e worksneet	cu.ft	Annual BMP Recharge Volume	Calculated	113,494	cu.ft	BMP Location>			
Post-D Impervious Area (or target Impervious Area)	Aimp	68,189	sq.ft	Avg BMP Recharge Efficiency		100.0%	Represents % Infiltration Recharged	OTHER NOTES			
Root Zone Water Capacity	RWC	4.62	in	%Rainfall became Runoff		77.9%	%	Pdesign is accurate only afte	r BMP dimension	s are updated	to make i
RWC Modified to consider dEXC	DRWC	0.00	in	%Runoff Infiltrated		55.8%	%	of BMP infiltration prior to filli	ng and the area o	occupied by BM	/IP are igr
Climatic Factor	C-factor	1.48	no units	%Runoff Recharged		11.0%	%	sensetive to dBMP, make sure dBMP selected is small enough for BMP to empty in less than 3 days. For la			
Average Annual P	Pavg	45.9	in	%Rainfall Recharged		8.6%	%	Segment Location of BMP if you select "impervious areas" RWC will be minimal but not zero as determine			
Recharge Requirement over Imp. Area					the soil type and a shallow ro	oot zone for this La	and Cover allo	wing con			

How to solve for different recharge volumes: By default the spreadsheet assigns the values of total deficit recharge volume "Vdef" and total proposed impervious area "Aimp" from the "Annual Recharge" sheet to "Vdef" and "Aimp" on this page. This allows solution for a single BMP to handle the entire recharge requirement assuming the runoff from entire impervious area is available to the BMP. To solve for a smaller BMP or a LID-IMP to recharge only part of the recharge requirement, set Vdef to your target value and Aimp to impervious area directly connected to your infiltration facility and then solve for ABMP or

dBMP. To go back to the default configuration clik the "Default Vdef & Aimp" button.

UG BASIN A3 (LONG WAY)

Input Values	
0.75	R
0.150	Sy
0.75	Kh
175.000	х
12.700	У
15.25	t
10.00	hi(0)
45.000	

Ground-v Moundin

40

50

60

70

80

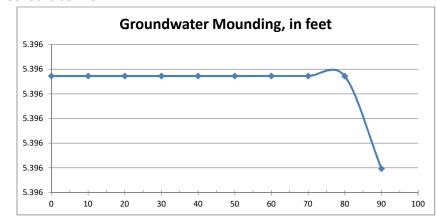
90

5.396

5.396

5.396

5.396 5.396


5.396

10.00	hi(0)	Initial thickness of saturated zor
15.396 5.396		Maximum thickness of saturated Maximum groundwater moundi
water	Distance from center of basin in x	
	direction, in feet	
5.396	0	
5.396	10	Re-Calculate Nov
5.396	20	
5.396	30	

Recharge rate (permeability rate) (in/hr) Specific yield, Sy (dimensionless) default value is 0.15; max value is 0.2 provided that a lab test data is submitted Horizontal hydraulic conductivity (in/hr) Kh = 5xRecharge Rate (R) in the costal plan; Kh=R outside the coastal plan 1/2 length of basin (x direction, in feet) 1/2 width of basin (y direction, in feet) Duration of infiltration period (hours) ne (feet)

ed zone (beneath center of basin at end of infiltration period) ling (beneath center of basin at end of infiltration period)

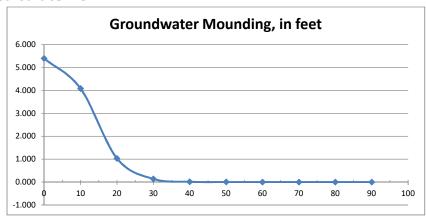
W

Disclaimer

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

UG BASIN A3 (SHORT WAY)

Input Values	
0.75	R
0.150	Sy
0.75	Kh
12.700	х
175.000	У
15.25	t
10.00	hi(0
45.000	h /


Ground-water center of basin in x Mounding, in feet direction, in feet

5.396	0	
4.082	10	
1.034	20	
0.137	30	
0.012	40	
0.003	50	
0.002	60	
0.002	70	
0.002	80	
0.002	90	

Recharge rate (permeability rate) (in/hr) Specific yield, Sy (dimensionless) default value is 0.15; max value is 0.2 provided that a lab test data is submitted Horizontal hydraulic conductivity (in/hr) Kh = 5xRecharge Rate (R) in the costal plan; Kh=R outside the coastal plan 1/2 length of basin (x direction, in feet) 1/2 width of basin (y direction, in feet) Duration of infiltration period (hours) Initial thickness of saturated zone (feet)

Maximum thickness of saturated zone (beneath center of basin at end of infiltration period) Maximum groundwater mounding (beneath center of basin at end of infiltration period)

Re-Calculate Now

Disclaimer

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

UG BASIN A4 (LONG WAY)

Input Values	
1.00	R
0.150	Sy
1.00	Kh
71.500	х
38.000	У
9.43	t
10.00	hi(0)

Ground-water center of basin in x Mounding, in feet direction, in feet

0

10

20

30

40

50

60

70

80

90

5.238

5.238

5.238

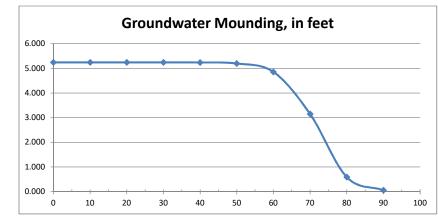
5.238

5.235

5.194

4.851

3.142 0.585


0.055

Specific yield, Sy (dimensionless)
default value is 0.15; max value is 0.2 provided that a lab test data is submitted Horizontal hydraulic conductivity (in/hr)
Kh = 5xRecharge Rate (R) in the costal plan; Kh=R outside the coastal plan
1/2 length of basin (x direction, in feet)
1/2 width of basin (y direction, in feet)
Duration of infiltration period (hours)
Initial thickness of saturated zone (feet)

Maximum thickness of saturated zone (beneath center of basin at end of infiltration period) Maximum groundwater mounding (beneath center of basin at end of infiltration period)

Re-Calculate Now

Recharge rate (permeability rate) (in/hr)

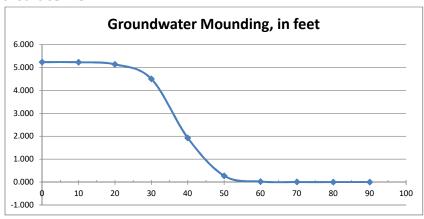
Disclaimer

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

UG BASIN A4 (SHORT WAY)

Input Values	
1.00	R
0.150	Sy
1.00	Kh
38.000	х
71.500	У
9.43	t
10.00	hi(0)
45.000	h (

15.238	h(max)
5.238	Δh(max)
	Distance from


Ground-water center of basin in x Mounding, in feet direction, in feet

5.238	0	
5.231	10	
5.139	20	
4.504	30	
1.928	40	
0.274	50	
0.021	60	
0.002	70	
0.002	80	
0.002	90	

Recharge rate (permeability rate) (in/hr) Specific yield, Sy (dimensionless) default value is 0.15; max value is 0.2 provided that a lab test data is submitted Horizontal hydraulic conductivity (in/hr) Kh = 5xRecharge Rate (R) in the costal plan; Kh=R outside the coastal plan 1/2 length of basin (x direction, in feet) 1/2 width of basin (y direction, in feet) Duration of infiltration period (hours) Initial thickness of saturated zone (feet)

Maximum thickness of saturated zone (beneath center of basin at end of infiltration period) Maximum groundwater mounding (beneath center of basin at end of infiltration period)

Re-Calculate Now

Disclaimer

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

APPENDIX E

Proposed Stormwater Conveyance System Calculations

LANGAN

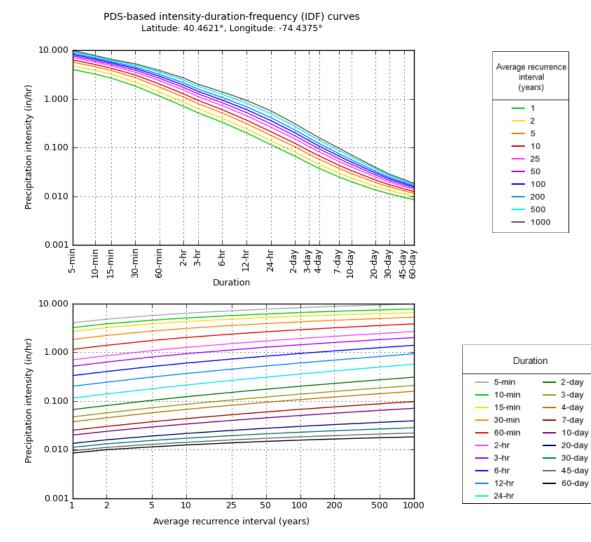
POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular


PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹										
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	4.01 (3.64-4.43)	4.78 (4.32-5.28)	5.66 (5.11-6.25)	6.31 (5.69-6.96)	7.09 (6.37-7.82)	7.66 (6.83-8.42)	8.21 (7.30-9.05)	8.71 (7.70-9.62)	9.34 (8.17-10.3)	9.80 (8.52-10.9)
10-min	3.20	3.82	4.54	5.05	5.65	6.09	6.52	6.91	7.39	7.72
	(2.90-3.54)	(3.46-4.22)	(4.09-5.01)	(4.55-5.57)	(5.08-6.23)	(5.44-6.71)	(5.80-7.19)	(6.10-7.63)	(6.46-8.17)	(6.71-8.57)
15-min	2.67 (2.42-2.95)	3.20 (2.90-3.54)	3.82 (3.45-4.22)	4.26 (3.84-4.70)	4.78 (4.29-5.26)	5.14 (4.59-5.66)	5.50 (4.88-6.06)	5.81 (5.13-6.41)	6.20 (5.42-6.86)	6.46 (5.62-7.18)
30-min	1.83 (1.66-2.02)	2.21 (2.00-2.44)	2.72 (2.45-3.00)	3.08 (2.78-3.40)	3.54 (3.18-3.90)	3.87 (3.46-4.26)	4.21 (3.74-4.64)	4.52 (4.00-4.99)	4.93 (4.31-5.46)	5.23 (4.55-5.81)
60-min	1.14 (1.03-1.26)	1.39 (1.25-1.53)	1.74 (1.57-1.92)	2.01 (1.81-2.22)	2.36 (2.11-2.60)	2.62 (2.34-2.89)	2.90 (2.58-3.20)	3.17 (2.80-3.50)	3.54 (3.10-3.92)	3.82 (3.32-4.24)
2-hr	0.698 (0.626-0.775)	0.850 (0.764-0.944)	1.08 (0.969-1.20)	1.26 (1.13-1.39)	1.50 (1.34-1.66)	1.70 (1.51-1.88)	1.91 (1.68-2.11)	2.12 (1.86-2.35)	2.42 (2.09-2.70)	2.66 (2.28-2.97)
3-hr	0.516 (0.464-0.575)	0.628 (0.566-0.701)	0.799 (0.718-0.890)	0.931 (0.835-1.04)	1.12 (0.994-1.24)	1.27 (1.12-1.41)	1.42 (1.25-1.58)	1.59 (1.39-1.76)	1.81 (1.56-2.02)	2.00 (1.70-2.23)
6-hr	0.331	0.402	0.510	0.599	0.725	0.830	0.943	1.07	1.24	1.39
	(0.298-0.370)	(0.362-0.449)	(0.457-0.568)	(0.534-0.664)	(0.640-0.802)	(0.729-0.917)	(0.821-1.04)	(0.918-1.18)	(1.05-1.37)	(1.16-1.54)
12-hr	0.200	0.243	0.310	0.366	0.450	0.523	0.601	0.689	0.819	0.931
	(0.179-0.226)	(0.217-0.273)	(0.276-0.348)	(0.325-0.410)	(0.396-0.502)	(0.456-0.583)	(0.519-0.670)	(0.587-0.768)	(0.686-0.915)	(0.767-1.04)
24-hr	0.115	0.139	0.178	0.212	0.264	0.308	0.358	0.413	0.496	0.568
	(0.105-0.126)	(0.128-0.153)	(0.164-0.196)	(0.194-0.233)	(0.239-0.288)	(0.277-0.337)	(0.319-0.391)	(0.364-0.452)	(0.430-0.545)	(0.485-0.626)
2-day	0.067	0.081	0.103	0.122	0.150	0.174	0.200	0.229	0.272	0.308
	(0.061-0.074)	(0.074-0.089)	(0.094-0.114)	(0.111-0.135)	(0.136-0.166)	(0.156-0.192)	(0.178-0.221)	(0.202-0.253)	(0.235-0.301)	(0.263-0.342)
3-day	0.047	0.057	0.073	0.086	0.105	0.121	0.138	0.157	0.185	0.208
	(0.043-0.052)	(0.052-0.063)	(0.066-0.080)	(0.078-0.094)	(0.095-0.115)	(0.109-0.132)	(0.123-0.152)	(0.139-0.173)	(0.161-0.204)	(0.179-0.231)
4-day	0.037	0.045	0.057	0.067	0.082	0.094	0.107	0.121	0.141	0.158
	(0.034-0.041)	(0.041-0.050)	(0.052-0.063)	(0.061-0.074)	(0.074-0.089)	(0.085-0.103)	(0.096-0.117)	(0.107-0.133)	(0.124-0.156)	(0.137-0.175)
7-day	0.025	0.030	0.037	0.044	0.052	0.060	0.067	0.076	0.088	0.097
	(0.023-0.027)	(0.028-0.033)	(0.035-0.041)	(0.040-0.047)	(0.048-0.057)	(0.054-0.065)	(0.061-0.073)	(0.068-0.082)	(0.077-0.096)	(0.085-0.107)
10-day	0.020	0.024	0.029	0.034	0.040	0.045	0.050	0.056	0.064	0.071
	(0.019-0.022)	(0.022-0.026)	(0.027-0.031)	(0.031-0.036)	(0.037-0.043)	(0.041-0.049)	(0.046-0.054)	(0.051-0.061)	(0.057-0.070)	(0.063-0.077)
20-day	0.013	0.016	0.019	0.022	0.025	0.028	0.030	0.033	0.036	0.039
	(0.013-0.014)	(0.015-0.017)	(0.018-0.020)	(0.020-0.023)	(0.023-0.026)	(0.026-0.029)	(0.028-0.032)	(0.030-0.035)	(0.033-0.039)	(0.036-0.042)
30-day	0.011	0.013	0.015	0.017	0.019	0.021	0.023	0.025	0.027	0.028
	(0.011-0.012)	(0.013-0.014)	(0.015-0.016)	(0.016-0.018)	(0.018-0.020)	(0.020-0.022)	(0.021-0.024)	(0.023-0.026)	(0.025-0.028)	(0.026-0.030)
45-day	0.009	0.011	0.013	0.014	0.016	0.017	0.018	0.020	0.021	0.022
	(0.009-0.010)	(0.011-0.012)	(0.012-0.014)	(0.014-0.015)	(0.015-0.017)	(0.016-0.018)	(0.017-0.019)	(0.018-0.021)	(0.020-0.022)	(0.021-0.023)
60-day	0.009 (0.008-0.009)	0.010 (0.010-0.010)	0.011 (0.011-0.012)	0.013 (0.012-0.013)	0.014 (0.013-0.014)	0.015 (0.014-0.016)	0.016 (0.015-0.016)	0.017 (0.016-0.017)	0.018 (0.017-0.019)	0.018 (0.017-0.019)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top


NOAA Atlas 14, Volume 2, Version 3

Created (GMT): Wed Feb 15 22:00:21 2023

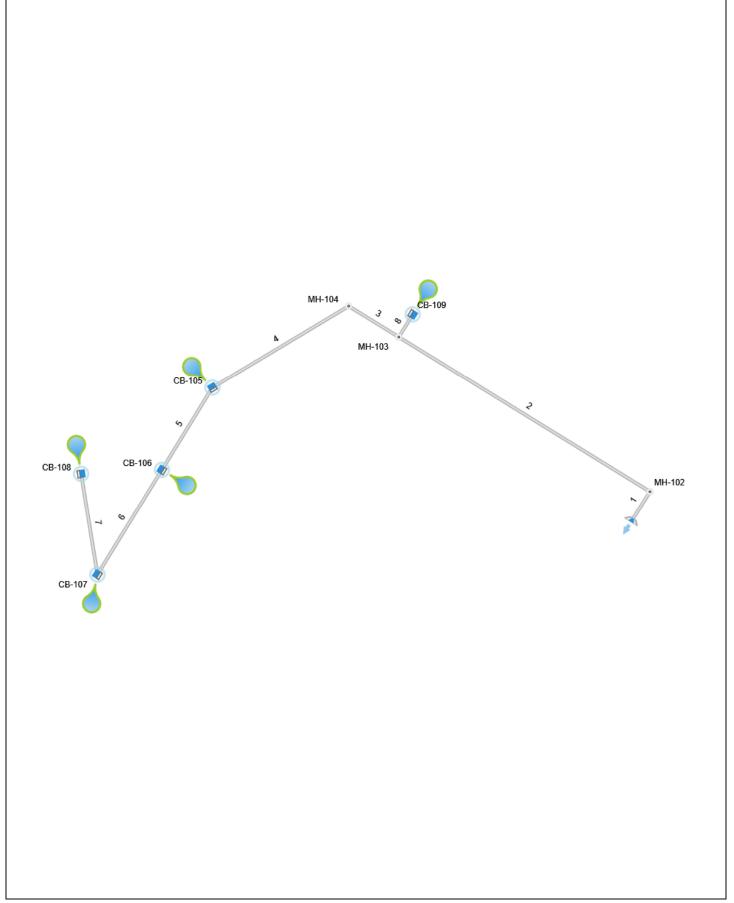
Back to Top

Maps & aerials

Small scale terrain

Large scale aerial

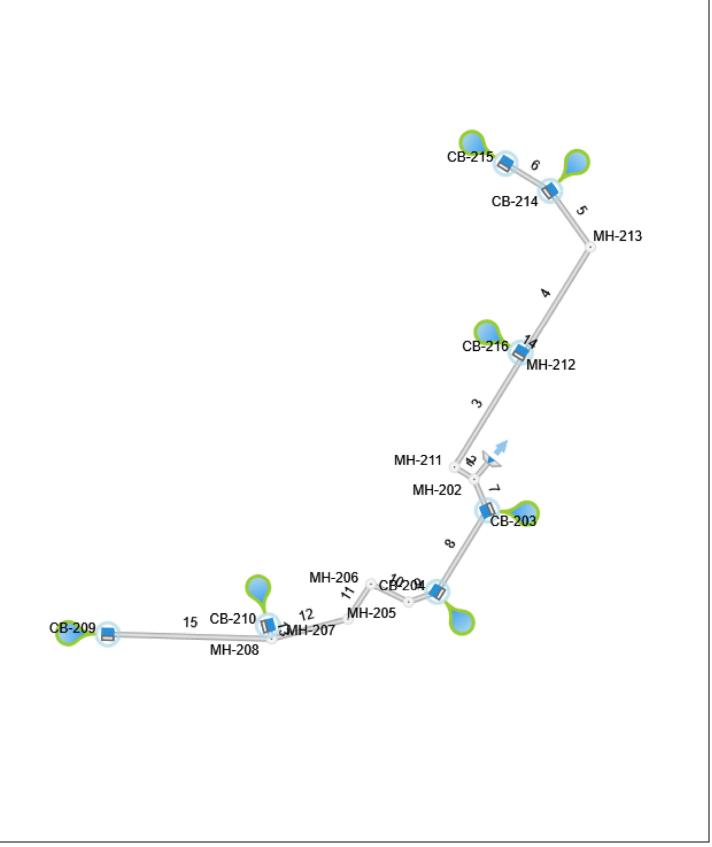
Back to Top


US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

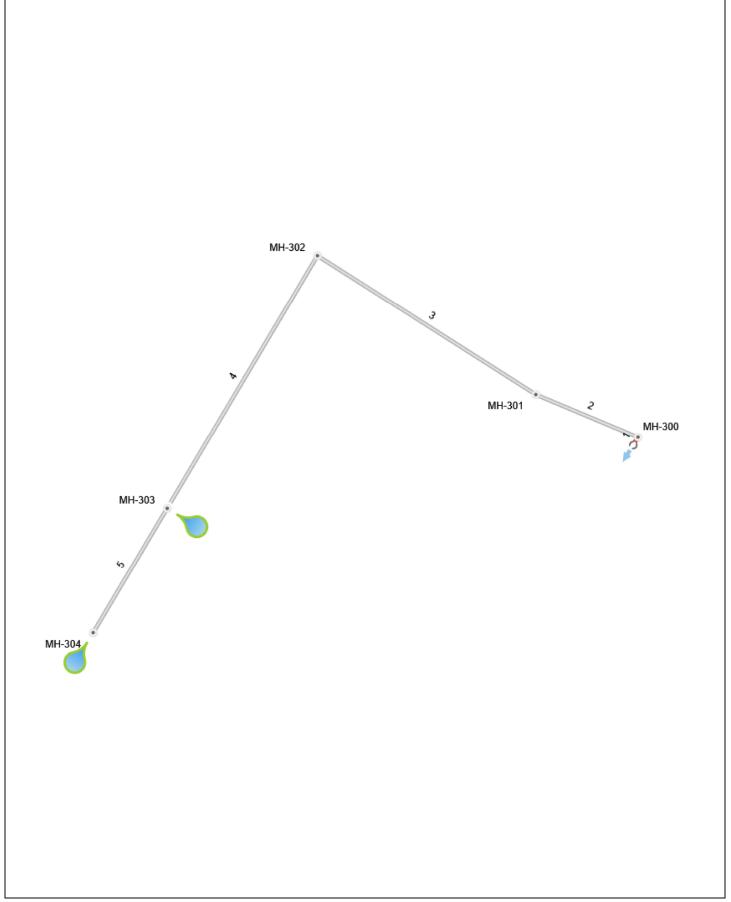
PROPOSED SUBWATERSHED CALCULATIONS King Arthur Ct Warehouse North Brunswick, NJ 100851001

Subwatershed	Watershed	Total Area	Open Space Area	Woods Area	Gravel Area	Impervious Area	Runoff Coefficient, c
		(AC)	(AC)	(AC)	(AC)	(AC)	(Weighted)
CB-209	WS A2	0.56	0.08	0.00	0.00	0.49	0.94
CB-210	WS A2	0.32	0.00	0.00	0.00	0.32	0.99
CB-204	WS A2	0.28	0.02	0.00	0.00	0.26	0.97
CB-203	WS A2	0.28	0.01	0.00	0.00	0.27	0.98
CB-109	WS A1	0.43	0.12	0.00	0.00	0.31	0.90
CB-214	WS A2	0.16	0.00	0.00	0.00	0.16	0.98
CB-215	WS A2	0.14	0.01	0.00	0.00	0.14	0.98
CB-216	WS A2	0.30	0.00	0.00	0.00	0.30	0.99
F1	WS A5	0.33	0.02	0.00	0.00	0.31	0.97
F2	WS A5	0.33	0.02	0.00	0.00	0.31	0.97
F3	WS A5	0.34	0.04	0.00	0.00	0.30	0.95
CB-105	WS A1	0.33	0.10	0.00	0.00	0.23	0.88
CB-106	WS A1	0.38	0.01	0.00	0.00	0.37	0.98
CB-107	WS A1	0.45	0.12	0.00	0.00	0.32	0.90
CB-108	WS A1	0.28	0.19	0.00	0.00	0.09	0.76
Roof Area 1	WS A3	2.20	0.00	0.00	0.00	2.20	0.99
Roof Area 2	WS A4	1.57	0.00	0.00	0.00	1.57	0.99


C-Values	
Open Space Area	0.65
Woods Area	0.59
Gravel Area	0.84
Impervious Area	0.99

05-05-2023

Stormwater Studio 2023 v 3.0.0.31


Line ID	Length	Drng	Area	Rational	C>	(A	т	Ċ	Intensity	Total Q	Capacity	Velocity	Li	ne	Invert	t Elev	HGL	Elev	Surfac	e Elev	Line No
	Ĕ	Incr	Total	Raf	Incr	Total	Inlet	Syst	Inte	ц	Сар	Vel	Size	Slope	Up	Dn	Up	Dn	Up	Dn	
	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
MH-102 TO OF-101	28.97	0.000	1.864	0.00	0.00	1.66	0.0	8.59	5.75	9.54	24.50	3.11	24	1.00	47.29	47.00	49.10	49.07	54.17	47.00	1
MH-103 TO MH-102	269.62	0.000	1.864	0.00	0.00	1.66	0.0	7.80	5.97	9.90	17.33	4.21	24	0.50	48.64	47.29	49.79	49.30	56.33	54.17	2
MH-104 TO MH-103	53.80	0.000	1.462	0.00	0.00	1.30	0.0	7.62	6.02	7.81	8.04	5.19	18	0.50	51.27	51.00	52.46	52.19	56.30	56.33	3
CB-105 TO MH-104	145.13	0.355	1.462	0.87	0.31	1.30	6.0	7.16	6.17	8.00	8.08	4.53	18	0.50	52.00	51.27	53.69	52.97	55.90	56.30	4
CB-106 TO CB-105	88.24	0.385	1.106	0.98	0.38	0.99	6.0	6.87	6.27	6.19	8.04	3.51	18	0.50	52.44	52.00	54.35	54.09	55.67	55.90	5
CB-107 TO CB-106	112.41	0.446	0.722	0.90	0.40	0.61	6.0	6.45	6.42	3.93	4.95	3.20	15	0.50	53.00	52.44	54.87	54.52	55.67	55.67	6
CB-108 TO CB-107	93.35	0.276	0.276	0.76	0.21	0.21	6.0	6.00	6.61	1.38	2.73	1.76	12	0.50	53.47	53.00	55.22	55.10	56.80	55.67	7
CB-109 TO MH-103	24.25	0.402	0.402	0.90	0.36	0.36	6.0	6.00	6.61	2.39	2.73	3.92	12	0.50	52.17	52.05	52.90	52.78	55.83	56.33	8

05-05-2023

Stormwater Studio 2023 v 3.0.0.31

Line ID	Length	Drng	Area	Rational	C	K A	Т	Ċ	Intensity	Total Q	Capacity	Velocity	Li	ne	Inver	t Elev	HGL	Elev	Surfac	e Elev	Line No
	Ľ	Incr	Total	Raf	Incr	Total	Inlet	Syst	Inte	ч	Сар	Vel	Size	Slope	Up	Dn	Up	Dn	Up	Dn	
	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
MH-202 TO OF-201	30.89	0.000	2.035	0.00	0.00	1.97	0.0	8.55	5.76	11.35	11.38	6.42	18	1.00	47.31	47.00	49.46	49.15	55.80	47.00	1
MH-211 TO MH-202	33.88	0.000	0.600	0.00	0.00	0.59	0.0	8.42	5.79	3.41	4.95	4.35	15	0.50	49.99	49.82	50.75	50.58	56.50	55.80	2
MH-212 TO MH-211	193.40	0.000	0.600	0.00	0.00	0.59	0.0	7.69	6.00	3.54	8.04	3.16	18	0.50	50.96	49.99	51.68	51.34	54.63	56.50	3
MH-213 TO MH-212	185.05	0.000	0.300	0.00	0.00	0.29	0.0	6.86	6.27	1.83	4.95	3.64	15	0.50	51.88	50.96	52.43	51.48	57.06	54.63	4
MH-214 TO MH-213	101.18	0.160	0.300	0.97	0.16	0.29	6.0	6.41	6.44	1.88	4.95	2.70	15	0.50	52.39	51.88	52.95	52.83	55.97	57.06	5
CB-214 TO CB-215	76.50	0.140	0.140	0.98	0.14	0.14	6.0	6.00	6.61	0.91	2.73	1.58	12	0.50	52.77	52.39	53.34	53.30	55.74	55.97	6
CB-203 TO MH-202	49.39	0.276	1.435	0.97	0.27	1.38	6.0	8.36	5.81	8.03	17.33	2.55	24	0.50	48.18	47.94	50.57	50.52	54.77	55.80	7
CB-204 TO CB-203	139.72	0.278	1.158	0.97	0.27	1.11	6.0	7.90	5.94	6.61	8.05	3.74	18	0.50	48.88	48.18	51.22	50.75	54.72	54.77	8
MH-205 TO CB-204	44.35	0.000	0.880	0.00	0.00	0.84	0.0	7.74	5.99	5.05	8.04	2.86	18	0.50	49.11	48.88	51.60	51.51	55.72	54.72	9
MH-206 TO MH-205	61.14	0.000	0.880	0.00	0.00	0.84	0.0	7.53	6.05	5.10	8.08	2.89	18	0.51	49.41	49.11	51.86	51.74	56.84	55.72	10
MH-207 TO MH-206	61.53	0.000	0.880	0.00	0.00	0.84	0.0	7.31	6.12	5.16	8.04	2.92	18	0.50	49.72	49.41	52.15	52.03	56.27	56.84	11
MH-208 TO MH-207	115.51	0.000	0.880	0.00	0.00	0.84	0.0	6.92	6.25	5.27	8.04	2.98	18	0.50	50.30	49.72	52.55	52.30	55.01	56.27	12
CB-210 TO MH-208	20.00	0.320	0.320	0.99	0.32	0.32	6.0	6.00	6.61	2.09	2.73	2.66	12	0.50	51.40	51.30	52.79	52.73	54.90	55.01	13
CB-216 TO MH-212	5.56	0.300	0.300	0.99	0.30	0.30	6.0	6.00	6.61	1.96	2.73	2.50	12	0.50	50.98	50.96	52.08	52.06	54.03	54.63	14
CB-209 TO MH-208	239.74	0.560	0.560	0.94	0.53	0.53	6.0	6.00	6.61	3.48	4.95	2.83	15	0.50	51.50	50.30	53.31	52.72	54.51	55.01	15

Up

(ft)

56.88

56.77

56.77

56.80

56.80

Surface Elev

Dn

(ft)

0.00

56.88

56.77

56.77

56.80

05-05-2023

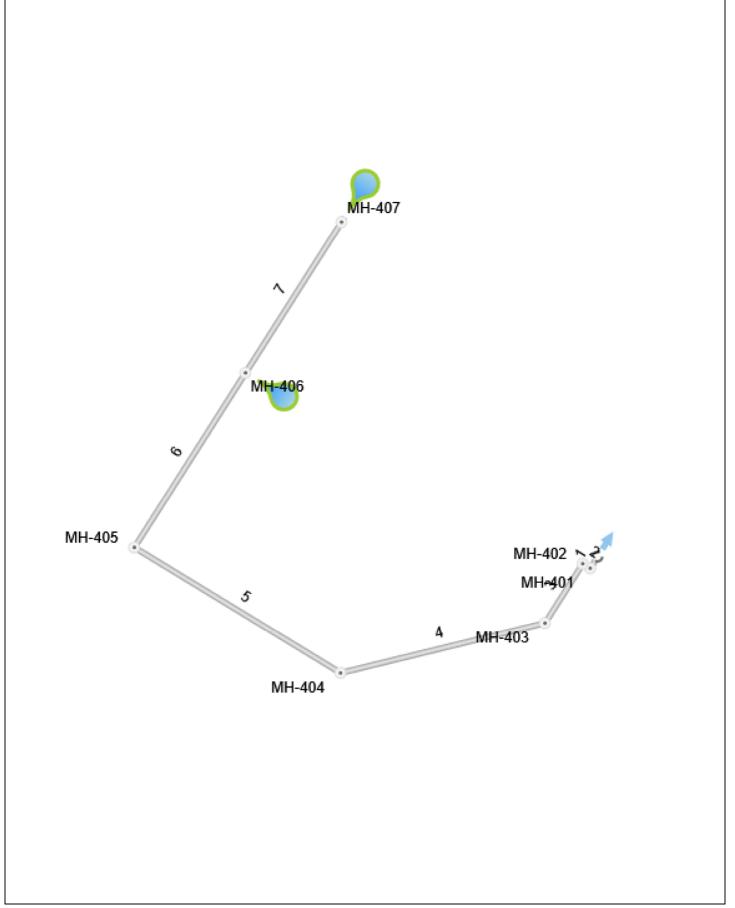
Line No

1

2

3

4

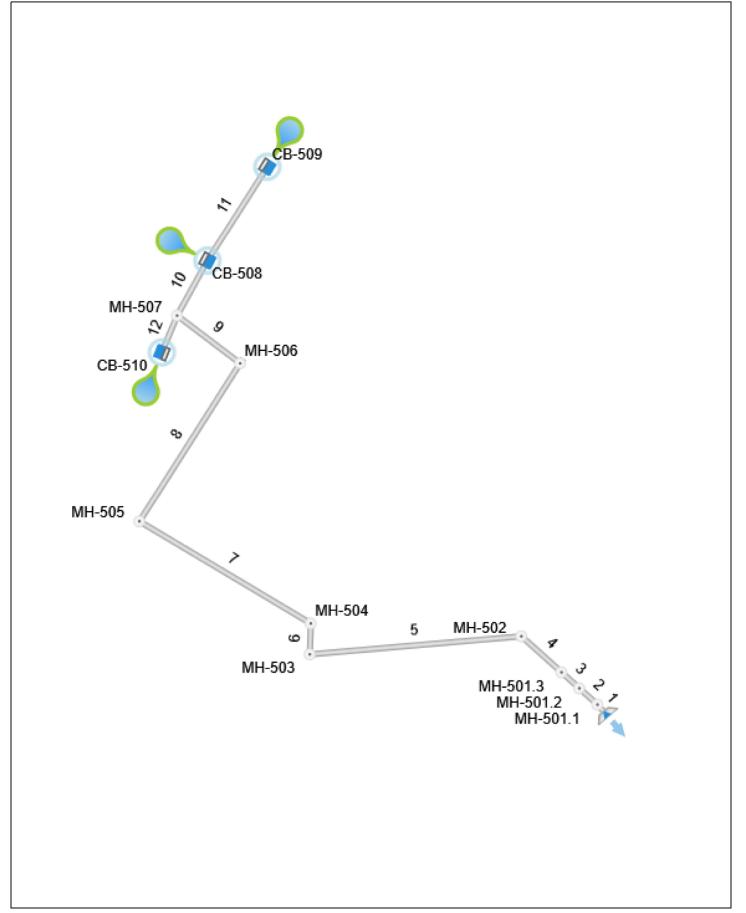

5

Line ID	Length	Drng	Area	Rational	C	κA	Т	Ċ	Intensity	Total Q	Capacity	Velocity	Li	ne	Inver	t Elev	HGL	Elev
	Le	Incr	Total	Rati	Incr	Total	Inlet	Syst	Inte	Ţ	Cap	Velo	Size	Slope	Up	Dn	Up	Dn
	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)
MH-300 TO UG BASIN A3	7.00	0.000	1.080	0.00	0.00	1.07	0.0	8.31	5.82	6.23	11.38	3.54	18	1.00	49.99	49.92	51.44	51.42
MH-301 TO MH-300	84.40	0.000	1.080	0.00	0.00	1.07	0.0	8.00	5.91	6.32	7.19	4.59	18	0.40	51.81	51.47	52.90	52.56
MH-302 TO MH-301	196.17	0.000	1.080	0.00	0.00	1.07	0.0	7.29	6.13	6.55	7.19	4.19	18	0.40	52.59	51.81	53.74	53.17
MH-303 TO MH-302	219.50	0.730	1.080	0.99	0.72	1.07	6.0	6.50	6.41	6.85	7.19	3.93	18	0.40	53.47	52.59	54.88	54.15
MH-304 TO MH-303	108.00	0.350	0.350	0.99	0.35	0.35	6.0	6.00	6.61	2.29	7.20	1.35	18	0.40	53.90	53.47	55.20	55.17

Notes: IDF File = 100851001-NOAA RAINFALL IDF.idf, Return Period = 25-yrs.

Project File: 100851001-Proposed Storm ConveyanceUG Basin A3.sws

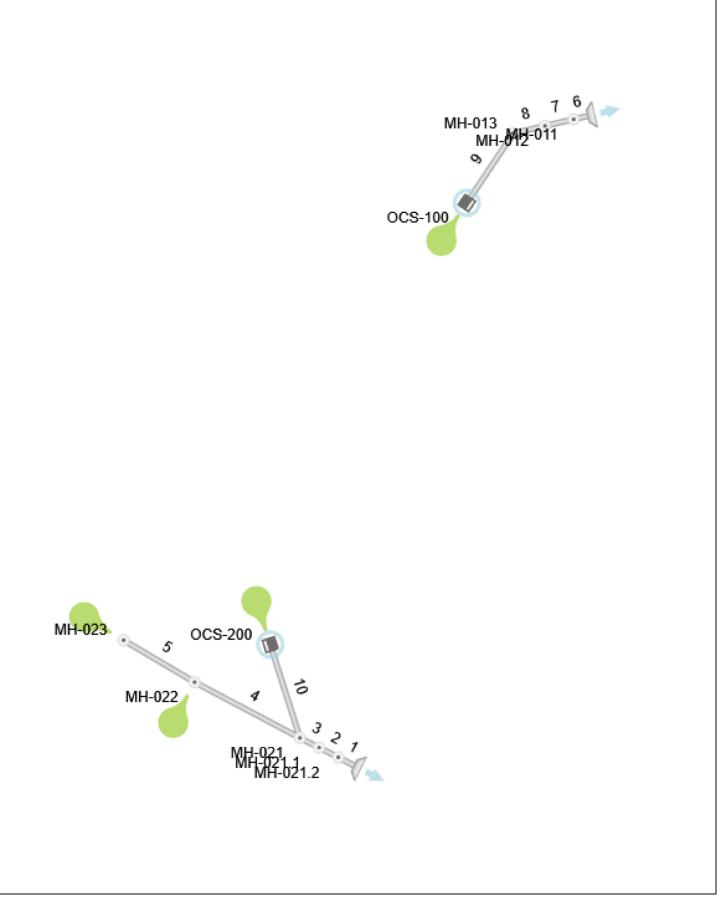
05-05-2023


05-05-2023

Stormwater Studio 2023 v 3.0.0.31

Line ID	Length	Drng	Area	Rational	C>	(A	Т	Ċ	Intensity	Total Q	Capacity	Velocity	Li	ne	Invert	Elev	HGL	Elev	Surfac	e Elev	Line No
	Ľ	Incr	Total	Rat	Incr	Total	Inlet	Syst	Inte	P	Cap	Ve	Size	Slope	Up	Dn	Up	Dn	Up	Dn	
	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
MH-401 TO UG A4	10.00	0.000	0.821	0.00	0.00	0.81	0.0	9.26	5.58	4.54	11.38	2.60	18	1.00	52.02	51.92	53.43	53.42	56.87	0.00	1
MH-402 TO MH-401	6.27	0.000	0.821	0.00	0.00	0.81	0.0	9.24	5.59	4.54	6.23	2.57	18	0.30	52.04	52.02	53.58	53.57	56.82	56.87	2
MH-403 TO MH-402	51.13	0.000	0.821	0.00	0.00	0.81	0.0	9.02	5.64	4.59	6.23	2.60	18	0.30	52.19	52.04	53.80	53.71	56.20	56.82	3
MH-404 TO MH-403	149.65	0.000	0.821	0.00	0.00	0.81	0.0	8.24	5.84	4.75	4.98	2.69	18	0.30	52.64	52.19	54.32	53.91	55.32	56.20	4
MH-405 TO MH-404	172.87	0.000	0.821	0.00	0.00	0.81	0.0	7.34	6.11	4.97	4.98	2.81	18	0.30	53.16	52.64	54.95	54.44	56.07	55.32	5
MH-406 TO MH-405	150.39	0.295	0.821	0.99	0.29	0.81	6.0	6.66	6.34	5.16	5.75	2.92	18	0.30	53.61	53.16	55.48	55.11	56.80	56.07	6
MH-407 TO MH-406	130.07	0.526	0.526	0.99	0.52	0.52	6.0	6.00	6.61	3.44	3.54	2.80	15	0.30	54.00	53.61	55.94	55.57	56.80	56.80	7

Plan View Stormwater Studio 2023 v 3.0.0.31


05-05-2023

05-05-2023

Stormwater Studio 2023 v 3.0.0.31

Line ID	Length	Drng	Area	Rational	C >	(A	Т	Ċ	Intensity	Total Q	Capacity	Velocity	Li	ne	Inver	t Elev	HGL	Elev	Surfac	e Elev	Line No
	Ľ	Incr	Total	Rat	Incr	Total	Inlet	Syst	Inte	Tc	Cap	Vel	Size	Slope	Up	Dn	Up	Dn	Up	Dn	
	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
MH-501.1 TO HW-500	8.16	0.000	1.000	0.00	0.00	0.96	0.0	9.12	5.62	5.41	16.09	3.16	18	2.00	21.07	20.91	22.41	22.41	37.20	33.10	1
MH-501.2 TO MH-501.1	21.93	0.000	1.000	0.00	0.00	0.96	0.0	9.10	5.62	5.41	44.06	8.42	18	15.00	29.36	26.07	30.25	26.53	49.19	37.20	2
MH-501.3 TO MH-501.2	21.55	0.000	1.000	0.00	0.00	0.96	0.0	9.08	5.63	5.42	44.06	8.37	18	15.00	37.59	34.36	38.48	34.82	50.30	49.19	3
MH-502 TO MH-501.3	48.47	0.000	1.000	0.00	0.00	0.96	0.0	8.99	5.65	5.44	18.35	6.26	18	2.60	43.85	42.59	44.74	43.23	51.76	50.30	4
MH-503 TO MH-502	188.25	0.000	1.000	0.00	0.00	0.96	0.0	8.60	5.75	5.53	16.09	4.18	18	2.00	47.61	43.85	48.51	45.18	55.46	51.76	5
MH-504 TO MH-503	28.55	0.000	1.000	0.00	0.00	0.96	0.0	8.48	5.78	5.56	6.23	3.31	18	0.30	47.70	47.61	49.04	48.98	55.67	55.46	6
MH-505 TO MH-504	178.31	0.000	1.000	0.00	0.00	0.96	0.0	7.73	5.99	5.77	6.20	3.99	18	0.30	51.20	50.67	52.34	51.81	56.02	55.67	7
MH-506 TO MH-505	170.39	0.000	1.000	0.00	0.00	0.96	0.0	7.05	6.21	5.98	6.46	3.54	18	0.32	51.75	51.20	53.05	52.66	56.44	56.02	8
MH-507 TO MH-506	71.00	0.000	1.000	0.00	0.00	0.96	6.0	6.78	6.30	6.07	6.87	3.43	18	0.36	52.01	51.75	53.51	53.32	56.60	56.44	9
MH-508 TO MH-507	57.00	0.330	0.670	0.97	0.32	0.64	6.0	6.53	6.39	4.11	6.19	2.33	18	0.30	52.27	52.10	53.77	53.74	55.56	56.60	10
MH-509 TO MH-508	101.26	0.340	0.340	0.95	0.32	0.32	6.0	6.00	6.61	2.13	3.83	1.74	15	0.30	52.58	52.27	53.95	53.86	55.56	55.56	11
FILTERRA TO MH-507	36.46	0.330	0.330	0.97	0.32	0.32	6.0	6.00	6.61	2.11	3.82	1.72	15	0.30	52.21	52.10	53.81	53.78	55.74	56.60	12
Notes: IDF File = 100851																		Proposed Sto			

05-05-2023

Stormwater Studio 2023 v 3.0.0.31

Line ID	Length	Drng	Area	Rational	C >	٢A	т	Ċ	Intensity	Total Q	Capacity	Velocity	Li	ne	Inver	t Elev	HGL	Elev	Surfac	e Elev	Line No
	Le	Incr	Total	Rat	Incr	Total	Inlet	Syst	Inte	To	Cap	Ve	Size	Slope	Up	Dn	Up	Dn	Up	Dn	1
	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
MH-021 TO HW-020	12.06	0.000	0.000	0.00	0.00	0.00	0.0	0.31	7.09	15.82	34.65	5.25	24	2.00	23.33	23.08	25.06	25.08	35.36	25.75	1
MH-021 TO MH-021.2	14.63	0.000	0.000	0.00	0.00	0.00	0.0	0.30	7.09	15.82	94.90	9.71	24	15.00	30.52	28.33	31.93	29.16	45.65	35.36	2
MH-021 TO MH-021.1	14.61	0.000	0.000	0.00	0.00	0.00	0.0	0.29	7.09	15.82	94.90	9.71	24	15.00	37.71	35.52	39.12	36.35	51.93	45.65	3
MH-022 TO MH-021	80.84	0.000	0.000	0.00	0.00	0.00	0.0	0.15	7.09	10.72	34.65	6.99	24	2.00	44.19	42.57	45.35	43.43	55.87	51.93	4
MH-023 TO MH-022	55.90	0.000	0.000	0.00	0.00	0.00	0.0	0.00	7.09	4.90	24.91	4.82	24	1.03	48.77	48.19	49.55	48.85	56.52	55.87	5
YD-011 TO HW-010	9.70	0.000	0.000	0.00	0.00	0.00	0.0	0.17	7.09	4.83	34.65	1.58	24	2.00	26.37	26.18	28.18	28.18	31.73	29.18	6
YD-012 TO YD-011	20.00	0.000	0.000	0.00	0.00	0.00	0.0	0.15	7.09	4.83	94.90	2.94	24	15.00	29.37	26.37	30.15	28.20	40.49	31.73	7
YD-013 TO YD-012	22.00	0.000	0.000	0.00	0.00	0.00	0.0	0.12	7.09	4.83	94.90	7.42	24	15.00	37.67	34.37	38.45	34.78	46.65	40.49	8
OCS-100 TO YD-013	56.91	0.000	0.000	0.00	0.00	0.00	0.0	0.00	7.09	4.83	34.65	5.34	24	2.00	43.81	42.67	44.58	43.25	51.00	46.65	9
OCS-200 TO MH-021	66.26	0.000	0.000	0.00	0.00	0.00	0.0	0.00	7.09	5.11	34.65	5.50	24	2.00	43.83	42.50	44.63	43.09	51.00	51.93	10

Underdrain Analysis

LANGAN

Underdrain Sizing Calculations

Δ

Underdrain pipes must have atleast <u>twice</u> the conveyance rate as the design infiltration rate of the sand layer, which is also twice the infiltration rate of the soil bed. Therefore, calculations for the hydraulic capacity of the underdrains must be at least <u>four</u> times of the infiltration rate provided by the soil bed. (Per New Jersey Stormwater Management Best Management Practices Manual, Chaper 9.7)

1. Requiered	Basin	Underdrain	Flowrate	Analysis

Bioretention Basin #	Soil Bed Design Permeability Rate (in/hr)	K (in/hr)	Δh (in)	L (in)	A (ft²)	A (in²)	Q (in³/hr)	REQUIRED BASIN UNDERDRAIN(S) CAPACITY Q (cfs)
A1	0.5	2.0	30.0	18.0	5,443	783,792	2,612,640	0.42
A2	0.5	2.0	30.0	18.0	6,733	969,552	3,231,840	0.52

design permeability rate of the soil bed, multipled by 4 height of the soil bed plus the maximum height of the water к

Δh L

height of the soil bed that the water will flow through maximum area of soil that the water will flow through - basin bottom area

2. Underdrain Sizing - Pipe Capacity Calculation (Mannings Equation)

Bioretention Basin #	Pipe Size - Inside Diameter (ft)	Manning's Coefficient (PVC), n	Cross Sectional Area, A	Hydraulic Radius, R	Slope, S	Flow Capacity, Q
A1	0.50	0.009	0.20	0.125	0.003	0.44
A2	0.50	0.009	0.20	0.125	0.003	0.44

Manning's Equation

$Q = \frac{1.486}{n} R^{2/_3} S^{1/_2}$ (A)

SELECT 6-IN UNDERDRAIN FOR BASIN A1 & 6-IN UNDERDRAIN FOR BASIN A2

3. Minimum # of Underdrain Trunk Lines Required and Capacity Check

Bioretention Basin #	Required Flowrate, Q (cfs)	Minimum # of Underdrains*	Underdrain Capacity (cfs)
A1	0.42	1	0.42
A2	0.52	2	1.04

AC 1002 *Required # of underdrains indicates the # of individual trunklines required to convey the anticiapted basin underdrain flowrate. i.e. if 2 are required, the basin shall have 2 underdrains, evenly distributed, each conveying

approximately half of the anticipated basin underdrain flows.

UNDERDRAIN CAPACITY MEETS OR EXCEEEDS BASIN UNDERDRAIN FLOWRATE, THEREFORE UNDERDRAINS PASS CAPACITY CHECK

4. Underdrain Invert Analysis

Bioretention Basin #	Bottom of Basin Elevation	Underdrain Size (inches)	Underdrain Invert Upstream (feet)	Underdrain Length of Longest leg (feet)	Underdrain Slope (%)	Underdrain Invert Downstream (feet)	Thickness of Gravel at Upstream (inches)	Thickness of Gravel at Downstream (inches)	Average Thickness of Gravel (inches)
A1	47	6	44.25	151	0.30%	43.79	12.00	17.52	14.76
A2	47	6	44.25	138	0.30%	43.83	12.00	17.04	14.52
						-			
	LAN	5AN				Project:		ERDRAIN ANAL	

. 10085100[.]

05/05/23

AM

PM

F: 973.560.4901

P: 973.560.4900 NJ Certificate of Authorization No: 24GA27996400

APPENDIX F

Conduit Outlet Protection Calculations

LANGAN

	SOIL TEXTURE	ALLOWABLE VELOCITY
		(ft./sec.)
1	Sand	1.8
2	Sandy Loam	2.5
3	Silt Ioam (also high lime clay), Ioam	3.0
4	Sandy clay loam	3.5
5	Clay loam	4.0
6	Clay, fine gravel, gradded loam to gravel	5.0
7	Cobbles	5.5
8	Shale (non-weathered)	6.0

Soil type where outfall is located	=	3	(Note: Select number designating soil texture above)
allowable velocity	=	3.0	ft/sec
*v (velocity)	=	3.11	ft/sec
Rip Rap Apron required?		Yes	

Given

<u>n:</u>			
D_{o} (max inside he	ight) =	2	feet
W_{o} (max inside w	idth) =	2	feet
Q (discha	arge) =	9.54	cfs (25-year Storm)
*q (unit discharge, = Q	/W _o) =	4.8	cfs / foot
** T _w (tail w	ater) =	2.07	feet

* for the conduit design storm or the 25 year storm, whichever is greater

** for areas where $T_{\rm w}$ cannot be computed, use $T_{\rm w}$ = 0.2 $D_{\rm o.}$ For discharge

into detention basins, Tw shall equal the 2 year storm elevation in the basin.

Riprap Apron Dimensions

The length of the apron, L (in feet), shall be determined from the formula: Ι.

$$L_{a} = (1.8 \frac{q}{D_{o}^{1/2}}) + 7D_{o}$$

$$T_{w} < \frac{1}{2} D_{o}$$

$$L_{a} = 0 \text{ feet}$$

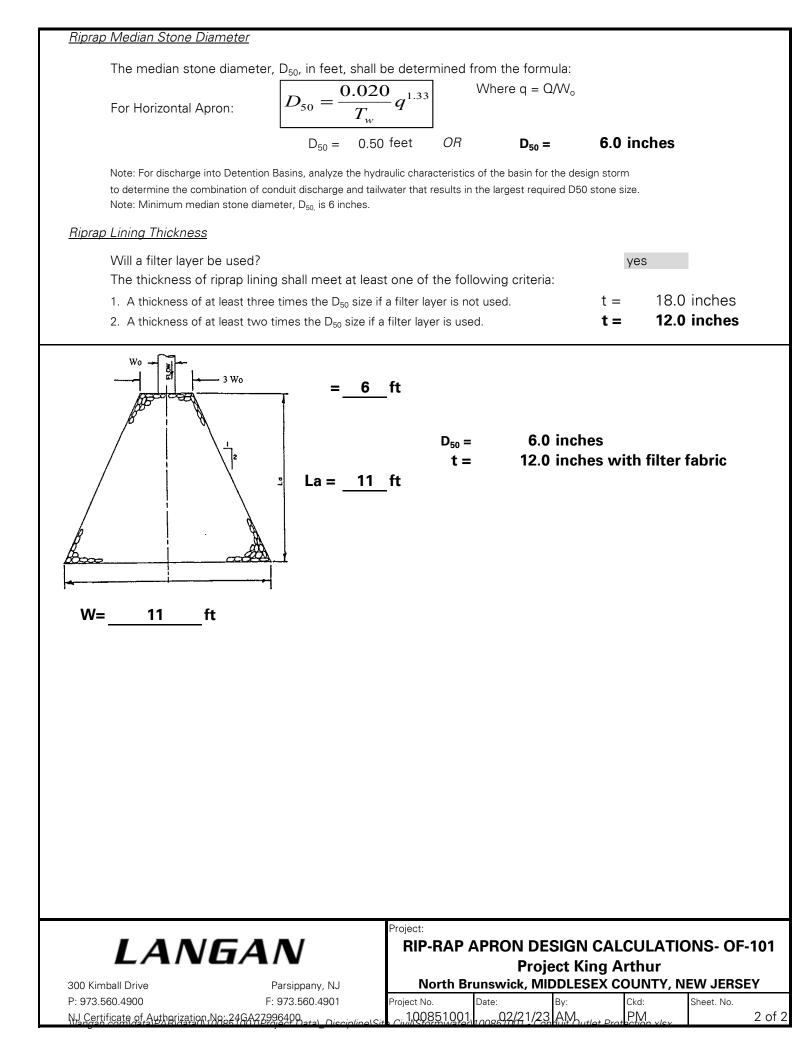
$$L_{a} = 3 \frac{q}{D_{o}^{\frac{1}{2}}}$$

$$T_{w} > \frac{1}{2} D_{o}$$

$$L_{a} = 11 \text{ feet}$$

II. Where there is no well-defined channel immediately downstream of the apron, the width, W, of the outlet end of the apron shall be as follows:

For tailwater elevation less than the elevation of the center of the pipe,


For tailwater elevation greater than or equal to the elevation of the center of the pipe, **W** =

$$W = 3W_o + 0.4L_a$$

Where L_a is the length of the apron determined from the formula and W_o is the culvert width.

LANGAN 300 Kimball Drive Parsippany, NJ			Project: RIP-RAP APRON DESIGN CALCULATIONS- OF-101 Project King Arthur North Brunswick, MIDDLESEX COUNTY, NEW JERSEY				
P: 973.560.4900	F: 973.560.4901	Project No.	Date:	By:	Ckd:	Sheet. No.	,
NJ Certificate of Authorization No: 24GA27996400		100851001	02/21/23	AM	CE		1 of 2

11 feet

	SOIL TEXTURE	ALLOWABLE VELOCITY
		(ft./sec.)
1	Sand	1.8
2	Sandy Loam	2.5
3	Silt Ioam (also high lime clay), Ioam	3.0
4	Sandy clay loam	3.5
5	Clay loam	4.0
6	Clay, fine gravel, gradded loam to gravel	5.0
7	Cobbles	5.5
8	Shale (non-weathered)	6.0

Soil type where outfall is located	=	3	(Note: Select number designating soil texture above)
allowable velocity	=	3.0	ft/sec
*v (velocity)	=	6.42	ft/sec
Rip Rap Apron required?		Yes	-

Given.

<u>ו:</u>			
D_{o} (max inside height) =	2	feet
W _o (max inside width)) =	2	feet
Q (discharge)) =	11.38	cfs (25-year Storm)
*q (unit discharge, = Q/W _o) =	5.7	cfs / foot
** T_w (tail water)) =	2.14	feet

* for the conduit design storm or the 25 year storm, whichever is greater

** for areas where $T_{\rm w}$ cannot be computed, use $T_{\rm w}$ = 0.2 $D_{\rm o.}$ For discharge

into detention basins, Tw shall equal the 2 year storm elevation in the basin.

Riprap Apron Dimensions

The length of the apron, L (in feet), shall be determined from the formula: Ι.

$$L_{a} = (1.8 \frac{q}{D_{o}^{1/2}}) + 7D_{o}$$

$$T_{w} < \frac{1}{2} D_{o}$$

$$L_{a} = 0 \text{ feet}$$

$$L_{a} = 3 \frac{q}{D_{o}^{\frac{1}{2}}}$$

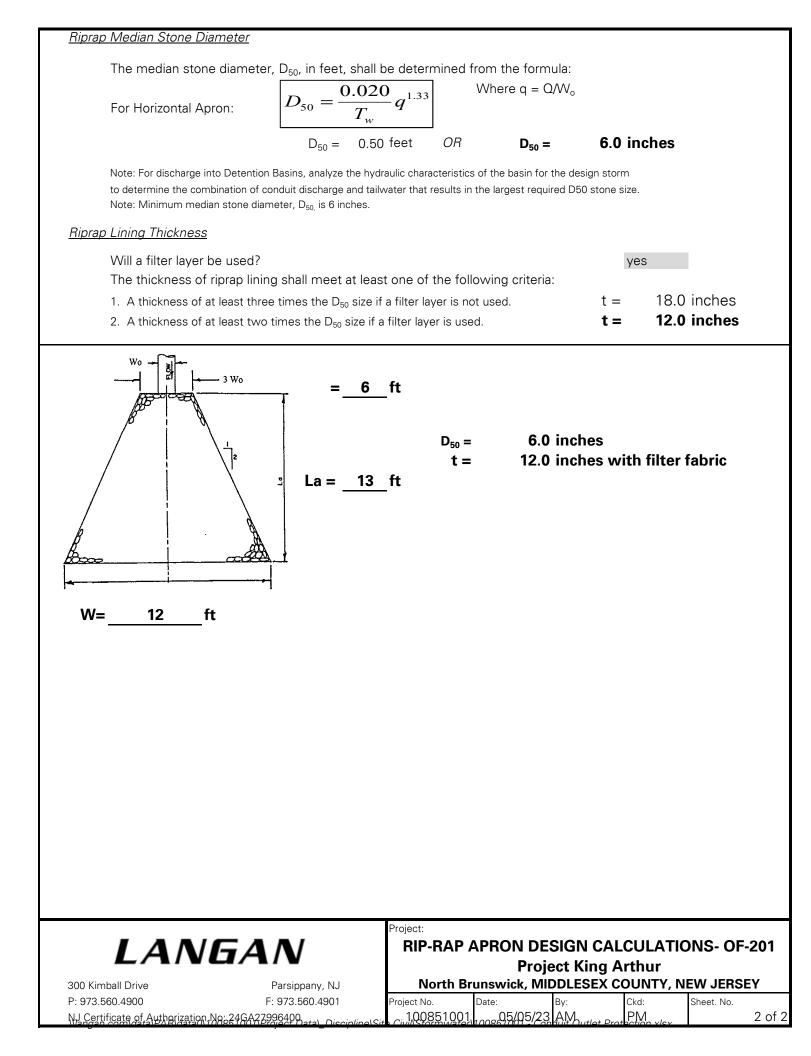
$$T_{w} > \frac{1}{2} D_{o}$$

$$L_{a} = 13 \text{ feet}$$

II. Where there is no well-defined channel immediately downstream of the apron, the width, W, of the outlet end of the apron shall be as follows:

For tailwater elevation less than the elevation of the center of the pipe,

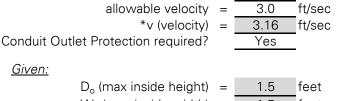
$$W = 3W_o + L_a \qquad \qquad W = \qquad 0 \text{ feet}$$


For tailwater elevation greater than or equal to the elevation of the center of the pipe, **W** =

$$W = 3W_o + 0.4L_a$$

Where L_a is the length of the apron determined from the formula and W_o is the culvert width.

LAN	Project: RIP-RAP APRON DESIGN CALCULATIONS- OF-201 Project King Arthur						
300 Kimball Drive	Parsippany, NJ	North Br	unswick, MII	DDLESEX C	OUNTY, N	EW JERSE	ΞY
P: 973.560.4900	F: 973.560.4901	Project No.	Date:	By:	Ckd:	Sheet. No.	
NJ Certificate of Authorization	No.246047999640Data_Discipline\Sit	civ1/20851001	1008595695/23	duit Outlet Prot	ection.xlsx		1 of 2


12 feet

	SOIL TEXTURE	ALLOWABLE VELOCITY			
		(ft./sec.)			
1	Sand	1.8			
2	Sandy Loam	2.5			
3	Silt loam (also high lime clay), loam	3.0			
2	Sandy clay loam	3.5			
5	6 Clay loam	4.0			
6	Clay, fine gravel, gradded loam to gravel	5.0			
7	Cobbles	5.5			
8	B Shale (non-weathered)	6.0			

Soil type where outfall is located = 3 (Note: Select number designating soil texture above)

D_{o}	(ma
۱۸/	(m

W _o (max inside width)	=	1.5	feet
Q (discharge)	=	5.4	cfs (10-year Storm)
*q (unit discharge, = Q/W_o)	=	3.6	cfs / foot
** T_w (tail water)	=	0.30	feet

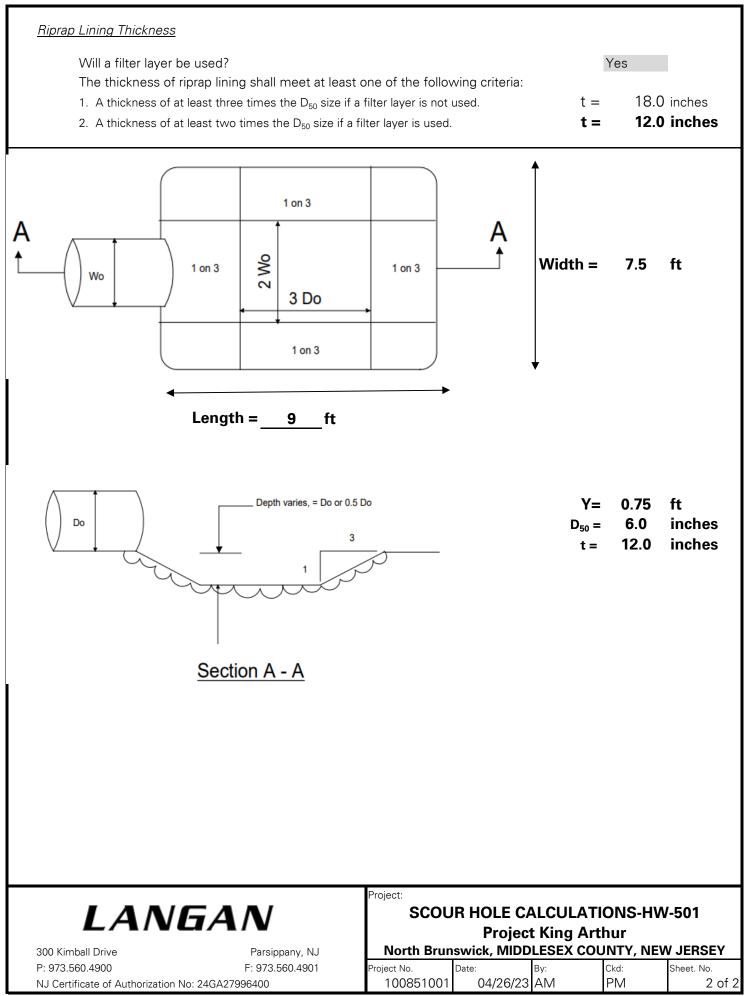
* for the conduit design storm or the 25 year storm, whichever is greater

** for areas where T_w cannot be computed, use $T_w = 0.2 D_o$. For discharge

into detention basins, Tw shall equal the 2 year storm elevation in the basin.

Scour Hole Criteria

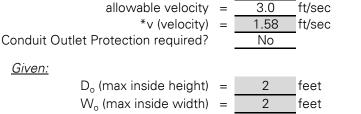
Y (depth of scour hole) = 0.75 feet


Riprap Median Stone Diameter

The median stone diameter, D₅₀, in feet, shall be determined from the formula:

		D ₅₀ = 0.500 fee	et OR	D ₅₀ =	6.0 inches
$d_{50} = \frac{0.0082}{Tw} q^{1.33}$	$Y = D_o$		D ₅₀ =	0.000 feet	
$d_{50} = \frac{0.0125}{Tw} q^{1.33}$	Y = ½ D _o		D ₅₀ =	0.229 feet	

Note: For discharge into Detention Basins, analyze the hydraulic characteristics of the basin for the design storm to determine the combination of conduit discharge and tailwater that results in the largest required D50 stone size. Note: Minimum median stone diameter, $\mathsf{D}_{\mathsf{50,}}$ is 6 inches.


		Project:					
LANGAN		SCOU	SCOUR HOLE CALCULATIONS-HW-501 Project King Arthur				
300 Kimball Drive	Parsippany, NJ	North Brunswick, MIDDLESEX COUNTY, NEW JE			V JERSEY		
P: 973.560.4900	F: 973.560.4901	Project No.	Date:	By:	Ckd:	Sheet. No.	
NJ Certificate of Authorization No: 24GA27996400		100851001	04/26/23	AM	PM	1 of 2	

	SOIL TEXTURE	ALLOWABLE VELOCITY				
		(ft./sec.)				
1	Sand	1.8				
2	Sandy Loam	2.5				
3	Silt Ioam (also high lime clay), Ioam	3.0				
4	Sandy clay loam	3.5				
5	Clay loam	4.0				
6	Clay, fine gravel, gradded loam to gravel	5.0				
7	Cobbles	5.5				
8	Shale (non-weathered)	6.0				

TABLE 12-1 ALLOWABLE VELOCITIES FOR VARIOUS SOILS

Soil type where outfall is located = 3 (Note: Select number designating soil texture above)

	-	2	IEEL
Q (discharge)	=	4.8	cfs (10-year Storm)
*q (unit discharge, = Q/W_o)	=	2.4	cfs / foot
** T_w (tail water)	=	0.40	feet

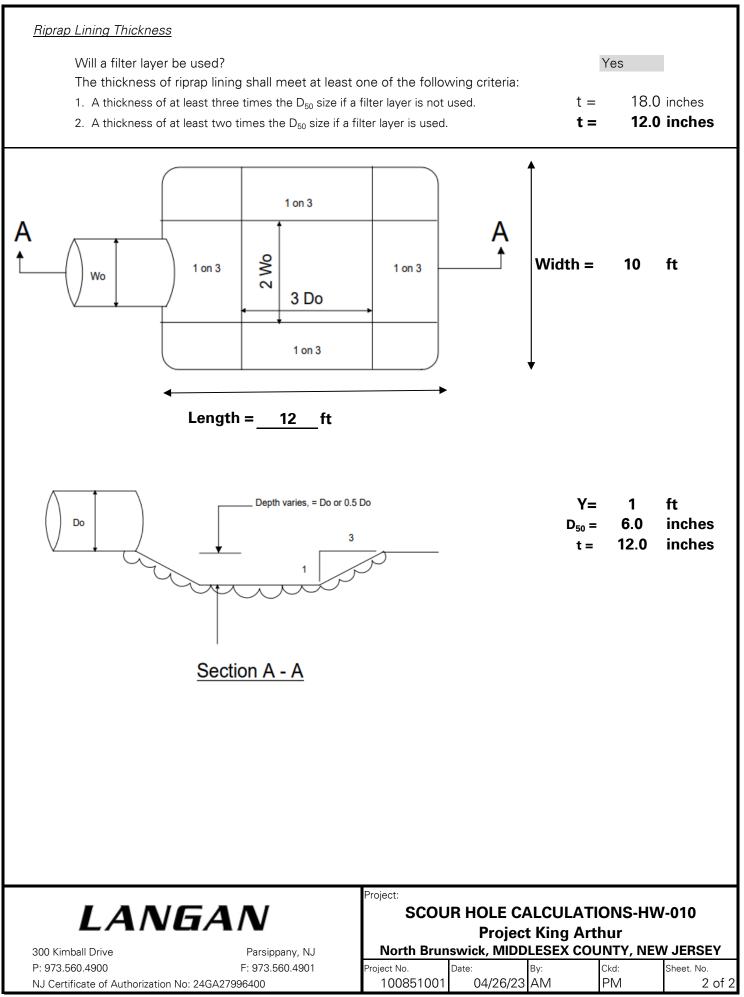
* for the conduit design storm or the 25 year storm, whichever is greater

** for areas where T_w cannot be computed, use $T_w = 0.2 D_o$. For discharge

into detention basins, Tw shall equal the 2 year storm elevation in the basin.

Scour Hole Criteria

Y (depth of scour hole) = 1 feet


Riprap Median Stone Diameter

The median stone diameter, D_{50} , in feet, shall be determined from the formula:

		$D_{50} = 0.500$	feet OR	D ₅₀ =	6.0 inches
$d_{50} = \frac{0.0082}{Tw} q^{1.33}$	$Y = D_o$		D ₅₀ =	= 0.000 f	eet
$d_{50} = \frac{0.0125}{Tw} q^{1.33}$	Y = ½ D _o		D ₅₀ :	= 0.101 f	eet

Note: For discharge into Detention Basins, analyze the hydraulic characteristics of the basin for the design storm to determine the combination of conduit discharge and tailwater that results in the largest required D50 stone size. Note: Minimum median stone diameter, D_{50} , is 6 inches.

LANGAN			SCOUR HOLE CALCULATIONS-HW-010 Project King Arthur					
300 Kimball Drive	Parsippany, NJ	North Brun	swick, MIDD	LESEX COL	JNTY, NEV	V JERSEY		
P: 973.560.4900	F: 973.560.4901	Project No.	Date:	By:	Ckd:	Sheet. No.		
NJ Certificate of Authorization No: 24GA27996400		100851001	04/26/23	AM	PM	1 of 2		

	SOIL TEXTURE	ALLOWABLE VELOCITY					
		(ft./sec.)					
1	Sand	1.8					
2	Sandy Loam	2.5					
3	Silt Ioam (also high lime clay), Ioam	3.0					
4	Sandy clay loam	3.5					
5	Clay loam	4.0					
6	Clay, fine gravel, gradded loam to gravel	5.0					
7	Cobbles	5.5					
8	Shale (non-weathered)	6.0					

TABLE 12-1 ALLOWABLE VELOCITIES FOR VARIOUS SOILS

Soil type where outfall is located = 3 (Note: Select number designating soil texture above)

allowable velocity = 3.0 ft/sec *v (velocity) = 5.25 ft/sec Conduit Outlet Protection required? Yes <u>Given:</u> D_o (max inside height) = 2 feet

W _o (max inside width)	=	2	feet
Q (discharge)	=	15.8	cfs (10-year Storm)
*q (unit discharge, = Q/W_o)	=	7.9	cfs / foot
** T_w (tail water)	=	0.40	feet

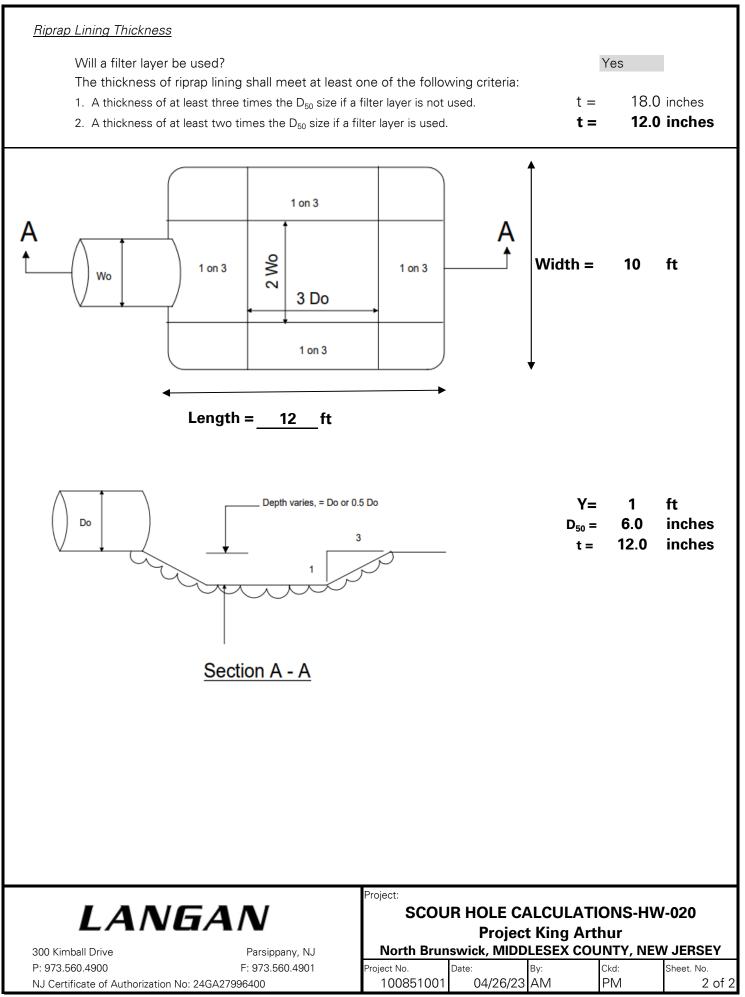
* for the conduit design storm or the 25 year storm, whichever is greater

** for areas where T_w cannot be computed, use $T_w = 0.2 D_o$. For discharge

into detention basins, Tw shall equal the 2 year storm elevation in the basin.

Scour Hole Criteria

Y (depth of scour hole) = 1 feet


Riprap Median Stone Diameter

The median stone diameter, D_{50} , in feet, shall be determined from the formula:

		$D_{50} = 0$).500 feet	OR	D ₅₀ =	6.0 inches
$d_{50} = \frac{0.0082}{Tw} q^{1.33}$	$Y = D_o$			D ₅₀ =	0.000 feet	
$d_{50} = \frac{0.0125}{Tw} q^{1.33}$				D ₅₀ =	0.489 feet	

Note: For discharge into Detention Basins, analyze the hydraulic characteristics of the basin for the design storm to determine the combination of conduit discharge and tailwater that results in the largest required D50 stone size. Note: Minimum median stone diameter, D_{50} , is 6 inches.

LAN	Project: SCOU	Project: SCOUR HOLE CALCULATIONS-HW-020 Project King Arthur						
300 Kimball Drive	Kimball Drive Parsippany, NJ			LESEX COL	JNTY, NEV	V JERSEY		
P: 973.560.4900	F: 973.560.4901	Project No.	Date:	By:	Ckd:	Sheet. No.		
NJ Certificate of Authorization N	100851001	04/26/23	AM	PM	1 of 2			

APPENDIX G

Geotechnical Stormwater Investigation Report

LANGAN

Memorandum

300 Kimball Drive Parsippany, NJ 07054 T: 973.560.4900 F: 973.560.4901

To:Holden Sabato / The Silverman GroupFrom:Kristen Shetler, P.E.
Arthur Roesler, P.E.Info:Peter McCabe / LanganDate:5 May 2023Re:Soils Investigation for Stormwater Management
Proposed King Arthur Court Warehouse Development
Block 252, Lot 5.03
North Brunswick, Middlesex County, New Jersey
Langan Project No.: 100851001

This memorandum provides a summary of the findings from our Soils Investigation for Stormwater Management for the proposed King Arthur Court warehouse development located in the Township of North Brunswick, Middlesex County, New Jersey.

The purpose of this study was to assist the Site/Civil Engineers with their design of the stormwater management system. As part of our investigation, we performed the following work: 1) reviewed available information; 2) obtained subsurface information by excavating test pits; 3) performed in-situ infiltration testing; and 4) performed laboratory testing.

All elevations given in this report are referenced to the North American Vertical Datum of 1988 (NAVD 88), unless otherwise noted.

EXISTING CONDITIONS

The approximate 18-acre project site is located at 1 Silver Line Drive in the Township of North Brunswick, New Jersey (designated as Block 252, Lot 5.03); see Figures 1 and 2. The site is bounded by the following:

- Woods and a trailer parking lot to the north.
- Weston's Mill Pond to the east.
- Woods and a residential development to the south.
- Raritan River Railroad and industrial development to the west. Route 1 is located further to the west.

The project site is currently occupied by a 2-story office building within the northern portion of the site and three small garages within the eastern portion of the site. Asphalt paved roadways and parking lots also exist throughout the site.

Landscaped areas immediately surrounding the existing development are covered mostly with a lawn and sparse trees. However, the majority of the site outside of the currently developed area are covered with dense vegetation and trees.

According to the 23 September 2020 Boundary and Partial Survey prepared by Langan, existing grades at the site generally range from approximate el 19 to el 64. Existing grades are lowest along Weston's Mill Pond at the east side of the site and highest along the railroad at the west side of the site.

PROPOSED CONSTRUCTION

Based on the 5 May 2023 Site Plans prepared by our firm, we understand that the current development plan will consist of the following:

- Demolition of existing structures and associated site features.
- Construction of a one-story warehouse with a building footprint of approximately 163,610 ft² and a finished floor elevation (FFE) of el 61.
- Construction of associated access drives, car parking lots, trailer parking lots, and loading dock aprons/dolly pads.
- Construction of 2 subsurface infiltration basins and 2 surface bioretention basins within the eastern portion of the site having the following bottom of basin grade elevations:
 - Surface Bioretention Basins A1 and A2 = el 47
 - Small-Scale Subsurface Infiltration Basin A3 = el 49.5
 - Small-Scale Subsurface Infiltration Basin A4 = el 51.5
- Construction of 6 Filterra Bioscape Vaults within the western portion of the site.

REVIEW OF AVAILABLE INFORMATION

We reviewed available soil survey data, regional geologic information, and the FEMA Flood Maps for the site vicinity. Pertinent information obtained from our review of available information is summarized in the following paragraphs.

Soil Survey Data

We reviewed the United States Department of Agriculture (USDA) Natural Resources Conservation Service Soil Survey Map for Morris County, New Jersey; see Figures 3 and 4. A brief description of the soil type found at the site and surrounding areas is provided below.

• *Keyport-Urban land complex (KeuC):* These areas typically consist of sandy loam to silty clay loam. The soil mapping unit is reported to be Hydrologic Soil Group D.

- *Humaquepts (HumAt):* These areas typically consist of loam to sand. The soil mapping unit is reported to be Hydrologic Soil Group A/D.
- *Keyport Loam (KeoB):* These areas typically consist of loam to silty clay loam to clay loam to silty clay. The soil mapping unit is reported to be Hydrologic Soil Group D.
- *Klinesville channery loam (KkoE):* These areas typically consist of channery loam to very channery loam to weathered bedrock. The soil mapping unit is reported to be Hydrologic Soil Group D.
- Urban Land (UR): These areas are typically covered by pavement, concrete, buildings, and other structures underlain by disturbed and natural soil material. The hydrologic soil group for this soil mapping unit is undefined.

Regional Geology

We reviewed the 1998 New Jersey Geological Survey Open File Map 23 (OFM 23) entitled "Geology of the New Brunswick Quadrangle, Middlesex and Somerset Counties, New Jersey" and geologic data provided by the New Jersey Department of Environmental Protection (NJDEP); see Figure 5. A brief description of the surficial soils at the site and surrounding areas is provided below.

- *Pensauken Formation (Tp):* These areas generally consist of reddish yellow to yellow sand, pebble gravel, and minor cobble gravel.
- Weathered Shale, Mudstone, and Sandstone / Passaic Formation (Qws): These areas generally consist of interbedded sequence of reddish-brown to maroon and dusky grayish-red siltstone, reddish-brown siltstone to mudstone, separated by interbedded olive-gray to dark-gray siltstone and lesser silty argillite. Portions of this formation are exposed along the Raritan River and Weston's Mill Pond.
- *Alluvium* (Qal): These areas generally consist of reddish brown to yellowish brown to dark brown to light gray sand, silt, pebble-to-cobble gravel with minor clay and peat.

Flood Map

We reviewed the current Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Panel Number 34023C0133F dated 6 July 2010; see Figure 6. According to this map, the majority of the proposed development area lies outside of the 100-year and 500-year floodplains.

However, the eastern portion of the site along Weston's Mill Pond is within the limits of the 100-year flood zone (Zone A and Zone AE) or between the limits of the 100-year and 500-year flood zones (Zone X) with a base flood elevation of approximate el 25.8 to el 26.

LANGAN GEOTECHNICAL INVESTIGATION FOR STORMWATER DESIGN

The December 2022 preliminary stormwater field investigation consisted of the following:

- Excavating 9 test pits, identified as SHGW-1 through SHGW-3, TP-1 through TP-4, TP-11, and TP-12. TP-5 through TP-10 were not performed as part of this investigation.
- Performing 8 single ring infiltration tests at select test pit locations.
- Performing laboratory testing, including laboratory permeability tests.

The January 2023 supplemental stormwater field investigation consisted of the following:

- Excavating 10 test pits, identified as STP-1, STP-2, and STP-4 through STP-11. STP-3 was not performed as part of this investigation.
- Performing 7 single ring infiltration tests at select test pit locations.
- Performing laboratory testing.

Refer to Figure 2 for location of work. The test pits were performed in areas that were accessible at the time of our investigations.

The test pits and infiltration tests were completed under the full-time observation of a field engineer from our office acting under the direct supervision of our project Professional Engineer. Our field engineer laid out the boring and test pit locations, maintained logs of the explorations, classified soil encountered, and obtained representative material samples. Surface elevations at the boring and test pit locations were collected using survey-grade GPS equipment and compared to existing surface grades provided on the 23 September 2020 Boundary and Partial Survey prepared by Langan.

The attached Table 1 presents the findings from our investigations.

Test Pits

The test pits were excavated by Clear Ground Development, Inc. using a SANY SY80U Track Excavator in December 2022 and January 2023. The test pits were excavated to depths ranging from approximately 8 to 15 feet below existing grades. All test pits for this study were excavated within existing landscaped areas. The test pits were backfilled with excavated material and compacted with a bucket of the excavator upon completion.

Individual test pit logs are provided in Appendix A. Select test pit photographs are provided in Appendix B.

In-Situ Infiltration Testing

In-situ single ring infiltration testing was performed at 15 locations at depths ranging from approximately 1 to 6.5 feet below existing grades, corresponding to approximate el 44.5 to el 50. The single ring infiltration testing was performed in accordance with the latest NJ Stormwater BMP Manual.

The results of the single ring infiltration testing are provided in Table 2 and Appendix C.

Laboratory Testing

Soil samples from the geotechnical investigation were visually examined in the field and classifications were confirmed by re-examination in our Parsippany, New Jersey office. Select soil samples were sent to a specialty testing laboratory where the following tests were performed:

- Grain Size Distributions
- Hydrometer Analyses
- Natural Water Contents
- Tube Permeameter Testing

Tube permeameter testing was conducted on undisturbed samples collected from test pits TP-1, TP-3, and TP-4 during the preliminary investigation at depths ranging from approximately 5 to 6 feet below existing grades, corresponding to approximate el 44.3 to el 48.5.

The results of the geotechnical laboratory testing are provided in Appendix D.

SUBSURFACE CONDITIONS

Based on the results of the test pits performed for this study, the site subsurface conditions generally consisted of topsoil overlying successive strata of fill, alluvium/fluviomarine deposits, decomposed bedrock, and weathered shale bedrock. The following sections provide a detailed description of the encountered subsurface strata and groundwater conditions.

Topsoil

Topsoil typically consisting of brown to dark brown to reddish brown silty sand or sandy silt with varying amounts of clay, gravel, and roots was encountered at the surface of all test pits. The topsoil was found to be approximately 8 to 13 inches thick.

Fill

A layer of fill was encountered beneath the topsoil in the majority of the test pits. The fill was found to consist of the following:

- Brown to reddish brown to grayish brown to orangish brown fine to coarse sand with varying amounts of clay, silt, gravel, and cobbles.
- Reddish brown to grayish brown to orangish brown silt with varying amounts of clay, sand, gravel, rock fragments, and wood.
- Orangish gray clay with varying amounts of silt, sand, and gravel.

In test pits STP-1 and STP-2 (located within the western portion of the site) a 3-inch-thick layer of buried topsoil was encountered at the bottom of the fill layer.

Laboratory testing of select samples from the fill layer resulted in fines contents ranging from approximately 25% to 62%.

The fill layer was found to be approximately 2 to 6.5 feet thick.

Alluvium/Fluviomarine Deposits

<u>Sand</u>

Brown to orangish brown to reddish brown fine to coarse sand with varying amounts of gravel, silt, clay, and cobbles was encountered beneath the topsoil or fill.

Laboratory testing of select samples from the sand stratum resulted in fines contents ranging from approximately 4% to 38%.

The sand stratum was found to be approximately 1.5 to 9 feet thick.

<u>Clay</u>

Orangish brown to reddish brown to gray clay with varying amounts of sand, silt, and cobbles was encountered beneath the topsoil or sand in test pits SHGW-2, TP-3, TP-4, and STP-11 at depths ranging from 0.5 to 8 feet below existing grades, corresponding to approximate el 44.5 to el 54.

Laboratory testing of select samples from the clay stratum resulted in fines contents ranging from approximately 34% to 72%.

The clay stratum was found to be approximately 1.5 to 4.5 feet thick.

Decomposed Rock

Decomposed rock typically consisting of dark reddish brown to gray to grayish brown to orangish brown silt and rock fragments with varying amounts of fine to coarse sand and clay was encountered beneath the topsoil or alluvium/fluviomarine deposits in all test pits. The

decomposed rock was first encountered at depths ranging from approximately 2.5 to 11 feet below existing grades, corresponding to approximate el 38 to el 53.5.

The decomposed rock was found to be approximately 1 to 8.5 feet thick. Several test pits were terminated in this layer.

Weathered Bedrock

Weathered dark red shale bedrock was encountered beneath the decomposed rock in the majority of the test pits at depths ranging from approximately 5.5 to 13.5 feet below existing grades, corresponding to approximate el 35.5 to el 51.

Excavator bucket refusal on weathered or competent bedrock was encountered in many test pits at depths ranging from approximately 8 to 14 feet below existing grades, corresponding to approximate el 35 to el 49.

See Table 1 for bedrock information within the proposed basin footprints.

Groundwater

Groundwater was encountered in the majority of the test pits at depths ranging from approximately 6.5 to 13 feet below existing grades, corresponding to approximate el 36.5 to el 54. Groundwater was typically found to be at the highest elevation within the western portion of the site.

Perched groundwater seepage was encountered in test pits STP-4 and STP-6 at depths ranging from 9 to 9.5 feet below existing grades, corresponding to approximate el 41.3 to el 42.6

Soil mottling was first observed within test pits SHGW-1, SHGW-2, SHGW-3, TP-1, TP-4, TP-11, TP-12, STP-1, STP-2, STP-7, and STP-11 at depths ranging from 2 to 13 feet below existing grades, corresponding to approximate el 38 to el 54.

The groundwater level is expected to fluctuate based on weather, seasonal conditions, and construction activity.

See Table 1 for groundwater information within the proposed basin footprints.

INFILTRATION AND PERMEABILITY TESTING RESULTS

As part of this study, in-situ single ring infiltration tests and laboratory permeability tests were performed within the fill, alluvium/fluviomarine deposits, and decomposed rock.

Single Ring Infiltration Tests

In-situ single ring infiltration testing was performed in the fill, sandy alluvium/fluviomarine deposits, and decomposed rock. The following field hydraulic conductivity rates were recorded for each layer:

- **Fill:** In test pits STP-6, STP-7, and STP-8, the field hydraulic conductivity in the fill layer was found to be less than 1 inch per hour (failed pre-soak). In test pits TP-11 and TP-12, the field hydraulic conductivity in the fill layer was found to be 2 to 4.3 inches per hour.
- **Sand:** In test pits TP-1 and STP-5, the field hydraulic conductivity in the fill layer was found to be less than 1 inch per hour (failed pre-soak). In test pits TP-2, TP-11, TP-12, STP-4, STP-6, and STP-8, the field hydraulic conductivity in the sand was found to be 1.5 to 6.6 inches per hour.
- **Decomposed Rock:** In test pit TP-3, the field hydraulic conductivity in the decomposed rock was found to be 1.6 inches per hour. In test pit TP-4, the field hydraulic conductivity in the decomposed rock was found to be 49.5 inches per hour. This value is unreasonably high (likely due to voids in the decomposed rock stratum) and should not be used for design.

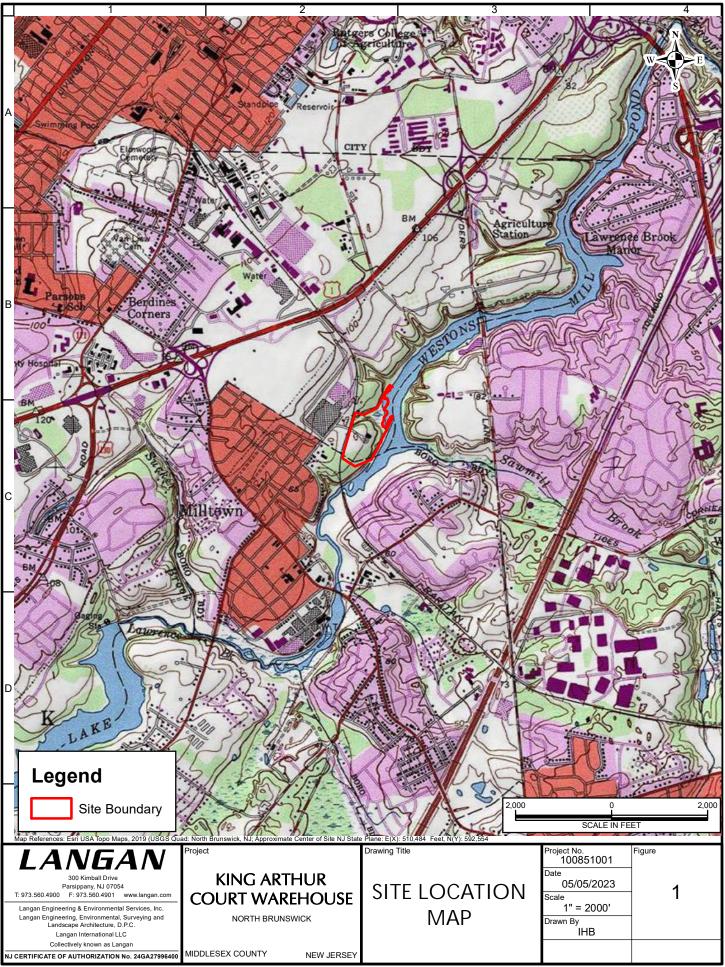
The individual results of the single ring infiltration tests are provided in Table 2 and Appendix C.

Laboratory Permeability Tests

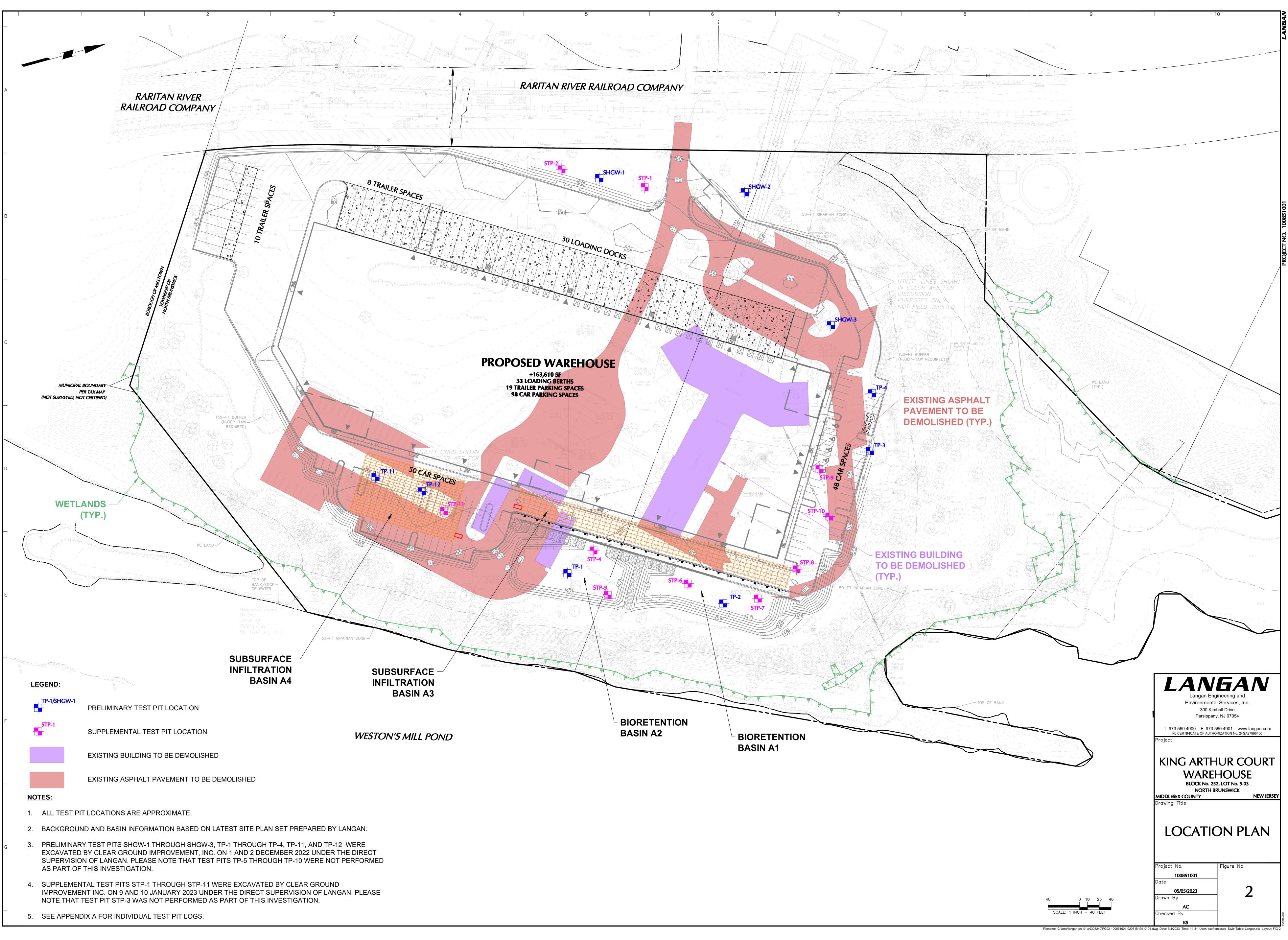
Laboratory permeability testing was performed in the sandy alluvium/fluviomarine deposits and decomposed rock. The results of the laboratory permeability testing are provided in the table below.

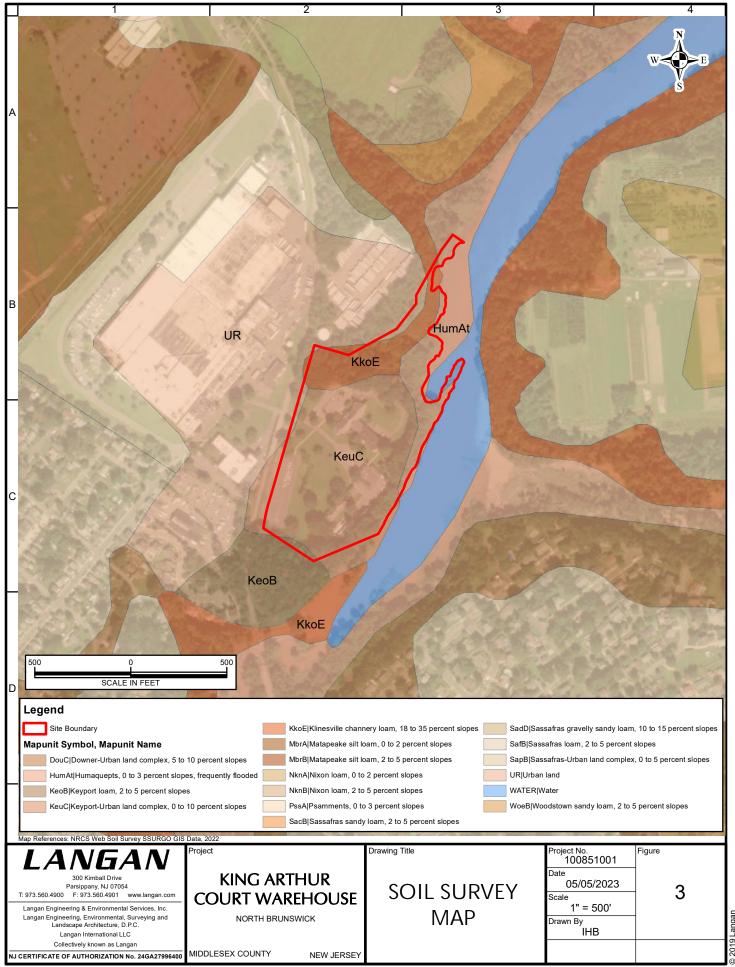
Location	Surface Elevation (feet)	Test Depth (feet)	Test Elevation (feet)	Soil Description	Laboratory Measured Hydraulic Conductivity, K (inches/hour)
TP-1	51.5	6	45.5	f-c SAND, some silt, some clay, trace f-c gravel, trace cobbles	0.28
TP-3	49.3	5	44.3	DECOMPOSED ROCK: Sandy ROCK FRAGMENTS, trace silt, trace clay	17
TP-4	54.5	6	48.5	DECOMPOSED ROCK: CLAY, some f-c sand, trace silt, trace rock fragments	3.56

TUBE PERMEAMETER TEST RESULTS

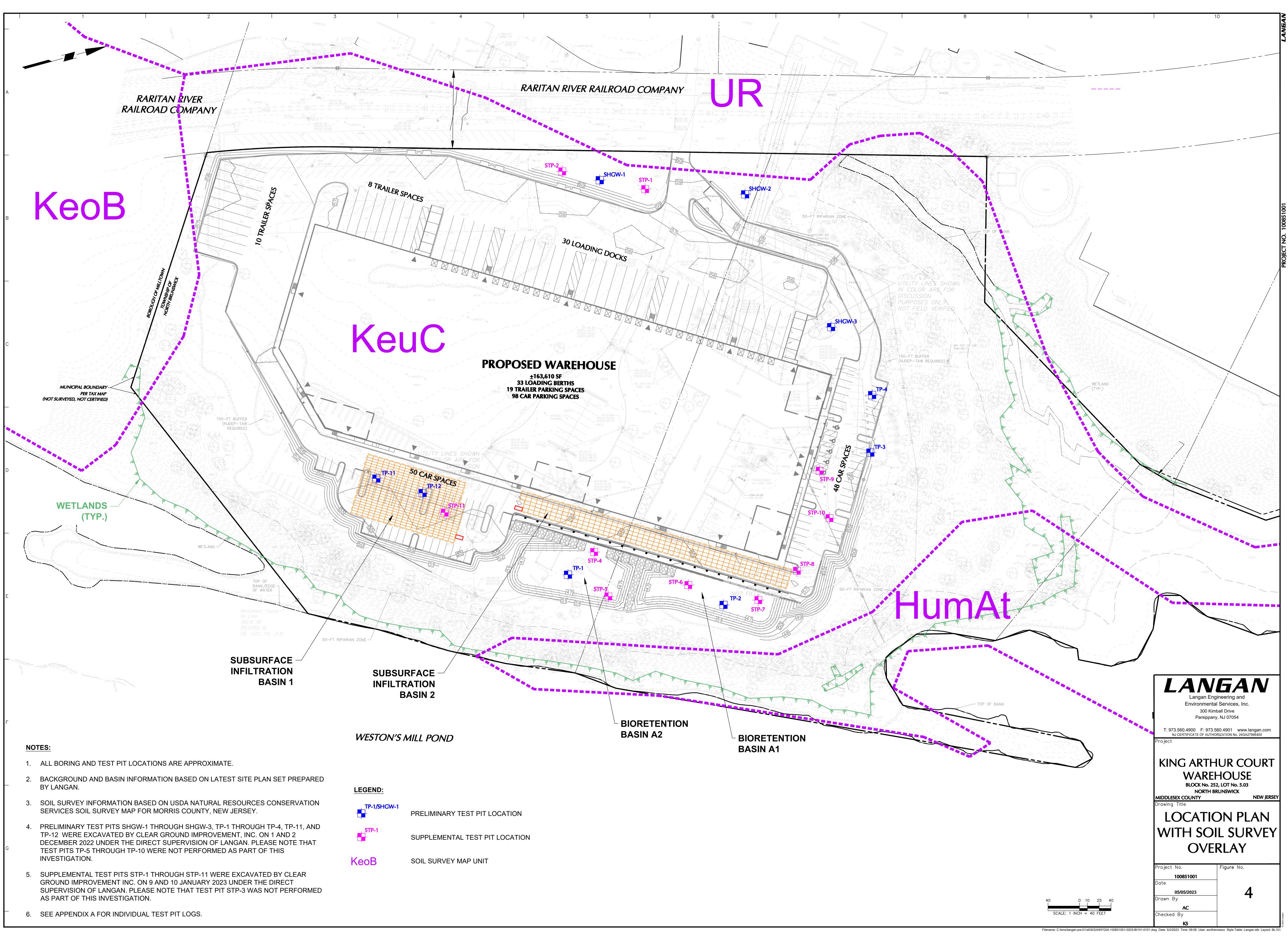

ATTACHMENTS:

- Figure 1 Site Location Map
- Figure 2 Location Plan
- Figure 3 Soil Survey Map
- Figure 4 Location Plan with Soil Survey Overlay
- Figure 5 Regional Geology Map
- Figure 6 FEMA Flood Map
- Table 1 Basin Groundwater, Soil Mottling, and Bedrock Summary
- Table 2 Single Ring Infiltration Testing Summary
- Appendix A Test Pit Logs
- Appendix B Select Test Pit Photographs
- Appendix C Single Ring Infiltration Test Results
- Appendix D Laboratory Testing Results

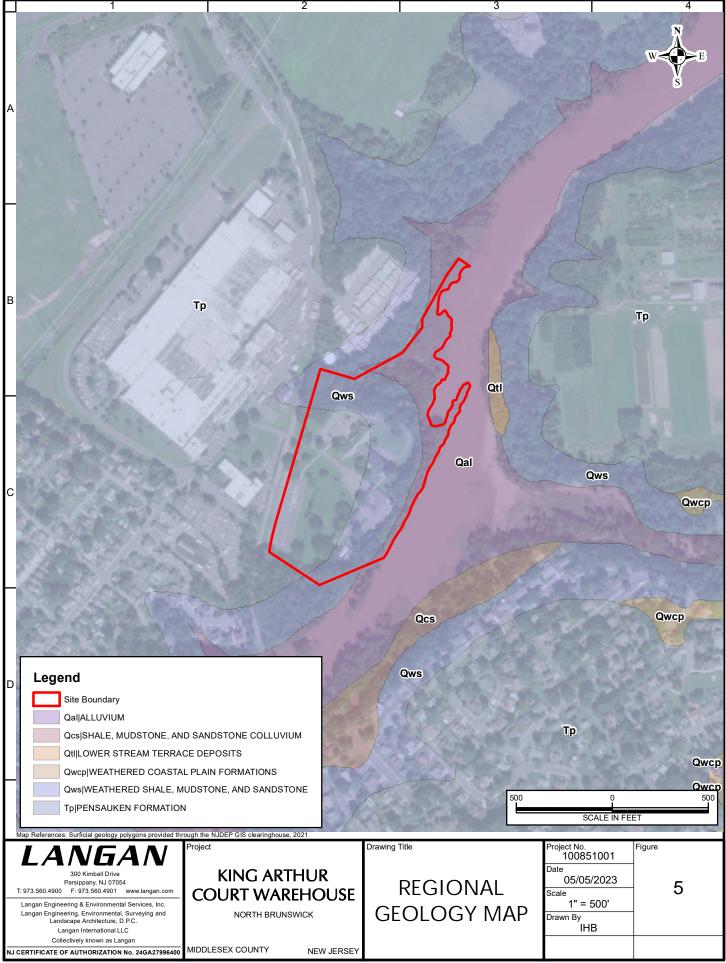

NJ Certificate of Authorization No. 24GA27996400 \\langan.com\data\PAR\data0\100851001\Project Data_Discipline\Geotechnical\Reports\100851001_Silverline SWM Report (2023-05-05).docx

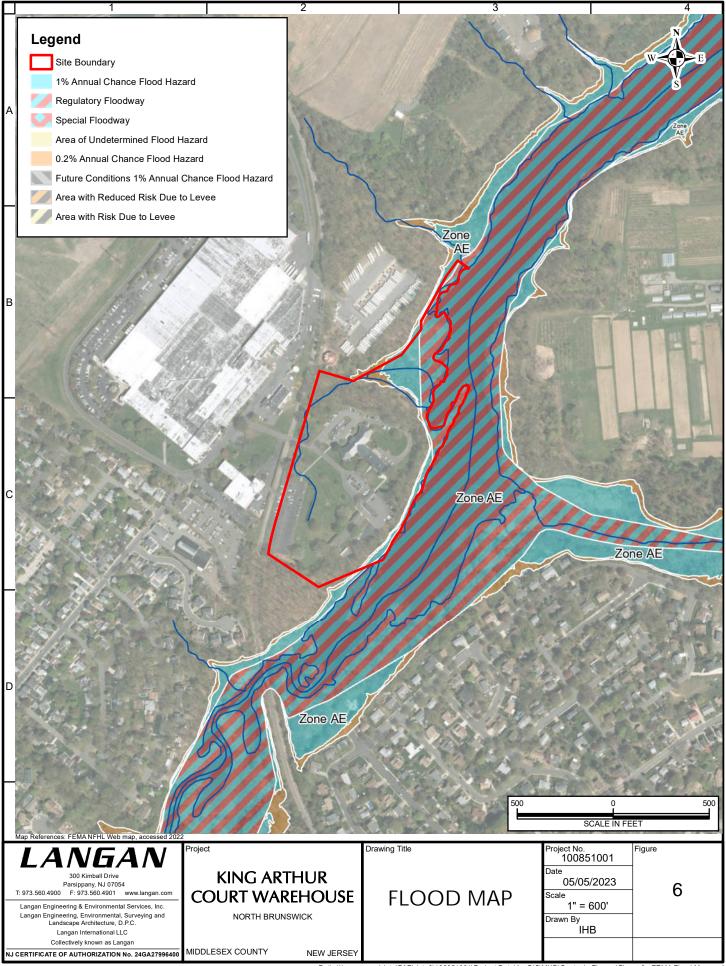

FIGURES

- Figure 1 Site Location Map
- Figure 2 Location Plan
- Figure 3 Soil Survey Map
- Figure 4 Location Plan with Soil Survey Overlay
- Figure 5 Regional Geology Map
- Figure 6 FEMA Flood Map



Path: \\langan.com\data\PAR\data0\100851001\Project Data\ArcGIS\MXD\Geotech_Figures\Figure 1 - USGS Site Location Map.mxd




Path: \\langan.com\data\PAR\data0\100851001\Project Data\ArcGIS\MXD\Geotech_Figures\Figure 3 - Soil Survey Map.mxd

TP-1/SHGW-1	PRELIMINARY TEST PIT LOCATION
STP-1	SUPPLEMENTAL TEST PIT LOCATION
оΒ	SOIL SURVEY MAP UNIT

Path: \\langan.com\data\PAR\data0\100851001\Project Data\ArcGIS\MXD\Geotech_Figures\Figure 4 - Surficial Geology.mxd

TABLES

Table 1Basin Groundwater, Soil Mottling, and
Bedrock SummaryTable 2Single Ring Infiltration Testing Summary

Basin	Test Pit Location	Existing Grade Elevation	Bottom of Basin Grade Elevation	(6" for Infiltration,		Observed Mot		Observed 0	Groundwater vation	Approx			. Top of d Bedrock	Notes
				3.5' for Bioretention)		Dec. 2022	Jan. 2023	Dec. 2022	Jan. 2023	Depth (feet)	Elevation	Depth (feet)	Elevation	
	TP-2	49.3				N.E.	-	37.8	-	10	39.3	12	37.3	
Bioretention Basin A1	STP-6	50.3	47	43.5	41.3	-	N.E.	-	39.3	11	39.3	12	38.3	Perched water encountered at el 41.3.
	STP-7	49.2				-	38.2	-	37.5	11	38.2	13.5	35.7	
	TP-1	51.5				38.5	-	41.5	-	8	43.5	N.E.	N.E.	
Bioretention Basin A2	STP-4	52.1	47	43.5	42.6	-	N.E.	-	N.E.	9.5	42.6	11	41.1	Perched water encountered at el 42.6.
	STP-5	50.4				-	N.E.	-	39.4	8	42.4	N.E.	N.E.	
	STP-4	52.1				-	N.E.	-	N.E.	9.5	42.6	11	41.1	Perched water encountered at el 42.6.
Subsurface Infiltration	STP-6	50.3	49.5	49	42.6	-	N.E.	-	39.3	11	39.3	12	38.3	Perched water encountered at el 41.3.
Basin A3	STP-7	49.2	49.5	49	42.0	-	38.2	-	37.5	11	38.2	13.5	35.7	
	STP-8	49.6				-	N.E.	-	36.6	11	38.6	12	37.6	
	TP-11	53.3				41.8	-	N.E.	-	8	45.3	N.E.	N.E.	
Subsurface Infiltration Basin A4	TP-12	53.6	51.5	51	45.6	45.6	-	N.E.	-	10	43.6	N.E.	N.E.	
20011711	STP-11	52.2				-	44.2	-	40.7	9.5	42.7	N.E.	N.E.	

TABLE 1: BASIN GROUNDWATER, SOIL MOTTLING, AND BEDROCK SUMMARY

Location	Surface Elevation (feet)	Test Depth (feet)	Test Elevation (feet)	Soil Description	Field Measured Hydraulic Conductivity, K (inches/hour)
TP-1	51.5	6	45.5	f-c SAND, some silt, some clay, trace f-c gravel, trace cobbles	< 1
TP-2	49.3	4.5	44.8	f-m SAND, trace silt, trace clay, trace fine gravel	5.9
TP-3	54.5	5	49.5	DECOMPOSED ROCK: Sandy ROCK FRAGMENTS, trace silt, trace clay	1.6
TP-4	55.9	6	49.9	DECOMPOSED ROCK: CLAY, some f-c sand, trace silt, trace rock fragments	49.5 **
TP-11	53.3	3.5	49.8	FILL: f-c SAND, some clay, trace silt	2
19-11	53.3	5.5	47.8	Gravelly f-c SAND, trace silt, trace clay, trace cobbles	2.3
TP-12	53.6	3.5	50.1	FILL: f-c SAND, some clay, trace silt	4.3
19-12	53.0	5.5	48.1	f-c SAND, some f-c gravel, some clay, trace silt	1.6
STP-4	52.1	6.5	45.6	f-c GRAVEL, some f-c sand, trace silt, trace clay	1.5
STP-5	50.4	5.5	44.9	f-c SAND, some silt, trace clay, trace f-c gravel, trace cobbles, trace boulders	< 1
STP-6	50.3	2.5	47.8	FILL: f-c SAND, some silt, some clay, trace f-c gravel, trace roots	< 1
517-0	50.5	5	45.3	f-c SAND, some silt, trace clay, trace f-c gravel	6.6
STP-7	49.2	2.5	46.7	FILL: f-c SAND, some silt, some clay, trace fine gravel	< 1
STP-8	49.6	1	48.6	FILL: Sandy SILT, some clay, trace f-c gravel, trace cobbles	< 1
517-0	43.0	5	44.6	f-c SAND, trace silt, trace f-c gravel, trace clay	4.4

TABLE 2: SINGLE RING INFILTRATION TEST RESULTS

** NOTE: voids in decomposed rock stratum likely caused inflated value that should not be used for design purposes

APPENDIX A

Test Pit Logs

Pro		d King Arthur Court Warehouse Development				0085	1001	DATE 12/2/	2022
	rth Bru	unswick, NJ	ELEVAT	ION				Approx. el 61.4 (NAVI	
		NTRACTOR Dund Improvement, Inc.	DEPTH		13 f		WATER LEV	/EL - First WATER LEVEL 9 ft □ -	- Complet
UIPME	NT		FOREM	AN			Cruz	LANGAN PERSONNEL Andrew R	
34					1	IAUIO	Ciuz		15501
mbol	ELEV (feet)	DESCRIPTION		Depth Scale	Number	Type		REMARKS	
<u> / .</u> 	+61.4	10YR 3/3 Dark brown Silty f-m SAND, trace fine gravel, trace roots (moist) [TOPSOIL]	;			В		excavating at 8:50 AM on 12	2/2/2022
					ې ۲	GRAB	Fine roots	s observed to 10" bgs.	
	+60.6	2.5YR 3/2 Dark reddish brown SILT, some fine sand, some		- 1 -					
		rock fragments (moist) [FILL]			-				
			-		-				
				- 2 -	-	m			
\otimes			-		S-2	GRAB			
		2.5YR 4/6 Dark reddish brown to 7.5YR 7/1 light gray SILT,	-	- 3 -	4				
	+57.9	some fine sand, some f-c gravel, some clay (moist) [FILL]	ļ		S-2A	GRAB			
	-57.9	7.5 YR 5/8 Light brown f-c SAND, trace fine gravel, trace silt			1				
		(moist)	-	- 4 -	-		Both side	ewalls collapsed at 4 ft bgs.	
			-		S-3	GRAB			
				- 5 -					
			-						
			-						
			-	- 6 -					
т. (+54.9								
<u>ر،</u> ه		7.5 YR 5/8 Light brown f-c SAND, some f-c gravel, trace silt, trace cobbles, trace boulders (wet)		- 7 -	4	GRAB			
<u>ن</u> م			-		S 4	GR			
). (-		-				
فبنج	+53.4	2.5 YR 3/2 Dark reddish brown to 7.5 YR 7/1 light gray SILT,		- 8 -	-		Orangiah	mottling observed from 9 to	0 11 5
∍∕.]		some f-c sand, trace rock fragments (moist to wet)	-				bgs.	mottling observed from 8 to	0 11.5
: <u>, ; ;</u>		[DECOMPOSED ROCK]	∇		2	₽B	-		
· / ·			<u> </u>	- 9 -	S-5	GRAB	Groundwa	ater seepage observed at 9	ft bgs
·)			-		-				
. (° .)			-	- 10 -					
÷9			ļ		1				
.(:o			ļ		1				
;).				- 11 - 	1				
· <u>(</u> -\\\	+49.9	2.5 YR 3/2 Dark reddish brown to 7.5 YR 7/11 gray			1		Moderate	e to hard digging at 11.5 ft b	as
$\langle \cdot \rangle$		WEATHERED SHALE (wet)		- 12 -	1		mousiale	to hard digging at 11.0 It b	30.
$\langle \rangle \rangle$			ļ		9	AB			
Ki			ļ		S-6	GRAB			
<u>```</u>	+48.4	End of Test Pit at 13 ft.		- 13 -	-		Bucket re	efusal encountered at 13 ft b	ogs.
							Finished	excavating at 9:40 AM on	-
				- 14 -	1		12/2/2022 Test pit b	2. backfilled with excavated ma	aterial
					1		upon com		
			-		-				
				- 15 —					

		LOG OF TEST				<u>N-2</u>		Sheet	1 of 1
PROJECT Pro		d King Arthur Court Warehouse Development	PROJE	CT NUMBE		10085	51001	TE	12/1/2022
LOCATIO	N		ELEVA	TION			•	Approx. el 62.1	
EXCAVAT	ION CO	NTRACTOR	DEPTH				WATER LEVEL -	First WATE	R LEVEL - Complet
EQUIPME	INT		FOREM	AN	13			NGAN PERSONNEL	
SA	NY SY	Y80U Excavator				Eladio MPLE	Cruz	An	drew Risser
Symbol	ELEV (feet)	DESCRIPTION		Depth Scale	<u>بة</u> ا	Type		REMARKS	
<u>x 14</u> . <u>x 1</u> 4. 17 . <u>x 14</u> . <u>x</u>	+62.1	10YR 3/3 Dark brown Silty f-m SAND, trace roots (moist) [TOPSOIL]		0 - -	S-1	GRAB		vating at 2:10 Pl oserved to 8" bgs	
<u>\C.\6</u>	+61.3	7.5YR 4/4 Brown f-m SAND, trace silt, trace fine gravel (moi	st)	- 1 - 2		0			
			-	- - - - -	S-2	GRAB			
			-	- 4 - 5 - 5 					
		7.5YR 5/6 Light brown f-c SAND, trace silt, trace fine gravel (moist)	-	- - - - - - -	S-3	GRAB			
	+54.1	2.5YR 3/2 Dark reddish brown to 7.5 YR 7/1 light gray to orangish brown Sandy CLAY, trace fine gravel, trace cobblet trace silt (moist)	-	- 8 - - - - - 9	- S - AS	GRAB	Mottling obse	erved from 8 to 1	0 ft bgs.
	.50.4	5YR 5/6 Yellowish red CLAY, trace f-m sand, trace silt (mois	it) ▽	- - - - 10	 S-5	GRAB			
	+52.1	7.5 YR 7/1 Light gray to 2.5 YR 3/2 dark reddish brown CLA some rock fragments, trace silt (wet) [DECOMPOSED ROC		-	- 9-S	GRAB		r seepage obser ottling observed f	
	+51.1	2.5 YR 3/2 Dark reddish brown to 7.5YR 7/1 light gray WEATHERED SHALE (wet)		- 11 - - - - 12			Moderate to	hard digging at [,]	l1 ft bgs.
	+49.1			- - - - 13	S-7	GRAB			
		End of Test Pit at 13 ft.		- - - - - - - - - - - - - - -			Finished exc 12/1/2022.	al encountered a avating at 3:00 F filled with excav stion.	PM on
LA		GAN		— 15 -			L		

	pose	d King Arthur Court Warehouse Development	PROJEC			1008	851001 12/1/202	2	
		unswick, NJ	ELEVATI	ON			Approx. el 56.7 (NAVD 88	8)	
CAVAT	ION CO	NTRACTOR	DEPTH		~	<u>n</u>	WATER LEVEL - First WATER LEVEL - Cor		
QUIPME	NT		FOREMA	N	8		6.5 ft		
SA	NY S'	Y80U Excavator			_		lio Cruz Andrew Risse	v Risser	
/mbol	ELEV (feet)	DESCRIPTION		Depth Scale	Number	MPLE ed. L	_		
<u>1</u>	+56.7	7.5YR 4/4 Brown Silty f-m SAND, trace roots (moist) [TOPSOIL]		- 0 -		GRAB	Started excavating at 1:20 PM on 12/1/2 Fine roots to 10" bgs.	2022	
	+55.7	7.5YR 5/6 Light brown f-m SAND, trace silt (moist)		1	-		_		
				2	S-2	GRAB			
<u>)</u>)		7.5YR 5/6 Light brown to 7.5YR 7/1 light gray f-m SAND, trac silt, trace clay (moist)	- - - - - - -	3	- - - - -		Orangish mottling observed from 3 to 5. bgs.	5 ft	
	+52.7	2.5YR 3/2 Dark reddish brown SILT, some f-c sand, trace roo fragments (moist) [DECOMPOSED ROCK]	ck _	4	-				
	+51.2	2.5YR 3/2 Dark reddish brown to 7.5YR 7/1 light gray		5	-				
		WEATHERED SHALE (moist to wet)	⊻	6	-		Groundwater seepage observed at 6.5 fi	t bo	
				7			Hard digging at 6.5 ft bgs.	-	
<u>),_)</u>	+48.7	End of Test Pit at 8 ft.		8	- - -		Bucket refusal encountered at 8 ft bgs. Finished excavating at 2:00 PM on		
				9			12/1/2022. Test pit backfilled with excavated materi upon completion.	al	
			-	10	-				
				11					
				12					
				13					
				14	-				
LA				— 15 —	-				

		d King Arthur Court Warehouse Development			^	10085	51001	DATE 1/10/202		
OCATIOI NO		unswick, NJ	ELEVA	TION				Approx. el 60.3 (NAVD 88)		
XCAVAT	FION CO		DEPTH		13.5	ft	WATER LEV			
QUIPME	ENT		FOREM				_	LANGAN PERSONNEL		
SA	NY S'	Y80U Excavator			-	ladio	Cruz	Emmanuel Carreno Guzman		
ymbol	ELEV (feet)	DESCRIPTION		Depth Scale	Number	Type		REMARKS		
<u>'</u> , <u>, , , ,</u>	+60.3	Dark brown SILT, some clay, trace f-c gravel, trace roots (moist) [TOPSOIL - 9" thick]	-		- - -	GRAB	1/10/2023			
	+59.6	Dark reddish brown SILT, some clay, trace f-c sand, trace f-c gravel (moist) [FILL]	C .	- 1	S-2	GRAB		s extend to 2.5' bgs.		
		Grayish to orangish brown SILT, some clay, trace f-c sand, trace roots (moist) [FILL]	-	- 2	S-3	GRAB				
	+57.3	Dark reddish brown f-c SAND, some silt, some clay, trace f-o gravel (moist) [FILL]	- — — C	- 3 - - 4	S-4	B GRAB				
	+56.3	Black SILT, some organics, trace f-c sand, trace clay (moist) [BURIED TOPSOIL - 3" thick] Orangish brown f-c SAND, some silt, trace f-c gravel (moist)	/	- 4 		GRAB				
			-	- 6	S-6	GRAB				
	+52.8	Orangish brown f-c SAND, some silt, trace f-c gravel (wet)	Ţ	- 7	S-7	GRAB	Fast grou bgs.	ndwater seepage observed at 7'		
	(Gray to dark reddish brown ROCK FRAGMENTS, some silt, trace f-c sand, trace clay (wet) [DECOMPOSED ROCK]	-	- 8	S-8	GRAB	Gray mot Rock frag	tling observed from 7.5' to 11' bgs jments up to 3" in size encountere bgs to 11' bgs.		
			-	- 9						
			-	- 10 -						
	+49.3	Dark reddish brown ROCK FRAGMENTS, trace silt, trace f-c sand, trace clay (wet) [WEATHERED ROCK]	;	- 11 -	6-S	GRAB		ments up to 8" in size encountere ogs to 13.5' bgs.		
			-	- 12						
	+46.8	End of Test Pit at 13.5'.		- 13				fusal encountered at 13.5' bgs.		
			-	- 14 - -				excavating at 12:50 PM on 3. Backfilled with excavated mater ppletion.		

		d King Arthur Court Warehouse Development	PROJEC			1	0085	I001 DATE 1/10/2023				
OCATIO	N		ELEVAT	ON				Approx. el 61.7 (NAVD 88)				
XCAVAT	ION CO		DEPTH			15 5		WATER LEVEL - First WATER LEVEL - Comple				
QUIPME	INT	F	OREMA	N		15 ft		7.5 ft LANGAN PĒRSONNEL				
SA	NY SY	Y80U Excavator				EI SAM		Cruz Emmanuel Carreno Guzman				
ymbol	ELEV (feet)	DESCRIPTION		Depth Scale		Number	Type	REMARKS				
· <u>7.1</u> . (+61.7	Dark brown SILT, trace clay, trace f-c sand, trace roots (mois [TOPSOIL- 8" thick]	t)	— 0 -	-	°-1	GRAB	Started excavating at 12:55 PM on 1/10/2023.				
		Orangish to dark grayish brown SILT, some f-c sand, trace clay, trace f-c gravel, trace roots (moist) [FILL]	-	1		S-2	GRAB	Fine roots extend to 1.5' bgs.				
		Dark grayish brown SILT, some clay, trace f-c sand, trace f-c gravel (moist) [FILL]	-	2 3		S-3	GRAB					
	+58.2	Black SILT, some organics, trace clay, trace f-c sand (moist) [BURIED TOPSOIL - 3" thick]		4		S-4	GRAB					
		Orangish brown f-c SAND, trace silt, trace f-c gravel, trace cobbles, trace boulder (moist)		5		S-5	GRAB					
			-	6				Boulder (approx. 1.5' diameter) encountere at 6' bgs.				
		Orangish brown f-c SAND, trace silt, trace f-c gravel (wet)		7 8		S-6	GRAB	Sidewall collapse encountered at 6' bgs. Fast groundwater seepage observed at 7.5 bgs.				
$\rangle\rangle$	+53.2	Gray to dark reddish brown ROCK FRAGMENTS, some silt, trace f-c sand, trace clay (wet) [DECOMPOSED ROCK]		9	-			Gray mottling observed from 8.5' bgs to 13				
) o).				9	-	S-7	GRAB	bgs. Rock fragments up to 3" in size encountere from 8.5' bgs to 13' bgs.				
				10								
			-	11								
				12								
	+48.7	Dark reddish brown ROCK FRAGMENTS, trace silt, trace cla trace f-c sand (wet) [WEATHERED ROCK]	y,	13		S-8	GRAB	Rock fragments up to 9" in size encountere from 13' bgs to 15' bgs. Unable to break rock fragments by hand fro				
				14 15	+			13' bgs to 15' bgs.				
//	+46.7	End of Test Pit at 15'.		16				Finished excavating at 1:50 PM on 1/10/2023. Backfilled with excavated material upon completion.				
			-	17								

		LOG OF TES				-4	Sheet 1 of
PROJECT Pro		d King Arthur Court Warehouse Development	PROJEC	T NUMBE		1008	51001 DATE 1/9/2023
LOCATIO	N		ELEVAT	ION			·
		J NSWICK , NJ NTRACTOR	DEPTH				Approx. el 52.1 (NAVD 88) WATER LEVEL - First WATER LEVEL - Comp
Cle	ear Gr	ound Improvement, Inc.			15	ft	N.E.
EQUIPME SA		/80U Excavator	FOREM	AN	E	Eladic	D Cruz
					SA	MPLE	
Symbol	ELEV (feet)	DESCRIPTION		Depth Scale	Number	Type	REMARKS
<u>x, 1</u> , <u>x, 1</u> ,	+52.1	Dark brown SILT, some f-c sand, trace clay, trace roots (mo	ist)	— 0 —		GRAB	Started excavating at 1:00 PM on 1/9/202
1. 7 <u>1.1</u> 7	+51.4	[TOPSOIL - 9" thick]	F		^	GR	Large diameter roots up to 0.5" extend to
	101.4	Grayish to orangish brown f-c SAND, some silt, trace f-c	F	1		9	bgs. Fine roots extend to 1' bgs.
		gravel, trace clay (moist) [FILL]	F	-	S-2	GRAB	
			F		1		-
			F	2	-		
			F		-		
>>>>			þ	3	-		
			þ		_		
****	+48.4	Grayish brown SILT, trace clay, trace f-c sand, trace f-c grav			1		
		trace wood (moist) [FILL]		4	S-3	GRAB	Buried wood pieces up to 6" diameter observed from 3.75' bgs to 5' bgs.
			E		_ v	R R	observed from 3.75 bys to 5 bys.
	+47.1			5			_
		Orangish brown Clayey f-c SAND, some silt, trace boulders	Ŀ		- 4	B	Boulders (9" by 15") encountered at 5' bgs
		(moist) [FILL]	ŀ	-	- S	GRAB	
XXX	+46.1	Orangish brown f-c GRAVEL, some f-c sand, trace silt, trace	2	6	-		-
\bigcirc°		clay (moist)	Í	-	S-5	GRAB	
, O. C			F		- s	15	
			F	. 7	-		
0.0°	-		þ	-	-		
\mathcal{O}			þ	8	_		
0.0.			þ	-	-		
$\dot{\mathbf{O}}$			þ		-		
\sim			E E	9	-		Slow perched water seepage observed at
<u>;;;;;</u>	+42.6	Dark reddish brown ROCK FRAGMENTS, some silt, trace f-			1		9.5' bgs from eastern sidewall of test pit.
:/0/:		sand (moist to wet) [DECOMPOSED ROCK]	Ĭ	10	S-6	GRAB	Rock fragments up to 3" in size encounter
			È		1 00	5	from 9.5' bgs to 15' bgs.
s//.			E	-	1		
$\frac{1}{\sqrt{2}}$	+41.1	Dark orangish brown ROCK FRAGMENTS, trace silt, trace	f-c	11	+	-	Rock fragments up to 8" in size encounter
:/\/:		sand (moist) [HIGHLY WEATHERED ROCK]	E	-	S-7	GRAB	from 11' bgs to 15' bgs.
X_1			E	12		0	
$\mathcal{T}\mathcal{K}$			E		_		
χ'			Ŀ	-	_		
]		F	13	_		
<u>()</u> (1		F	-	_		
			F	14	-		
ι £ . ζί			F		-		
父〉	1		F	-	-		
<u> 1/ / 1</u>	+37.1			15		-	Einished every sting at 1:44 DM as 4/0/00
		End of Test Pit at 15'.	F	-	-		Finished excavating at 1:44 PM on 1/9/20 Backfilled with excavated material upon
			F	16	-		completion.
			-	- 16	-		
			F	-	-		
			-	- - -	-		
		GAN		- - 17	-		

		d King Arthur Court Warehouse Development				1	0085	51001 1/9/2023			
OCATION. NO	rth Br	unswick, NJ	ELEVA	ATION				Approx. el 50.4 (NAVD 88)			
	ion cc ear Gr	NTRACTOR ound Improvement, Inc.	DEPTH			15 f		WATER LEVEL - First WATER LEVEL - Compl 11 ft LANGAN PERSONNEL			
SA	NY S	Y80U Excavator					ladio IPLE	Cruz Emmanuel Carreno Guzman			
ymbol	ELEV (feet)	DESCRIPTION		Dept Scal		Number	Type	REMARKS			
· <u>·</u> ··································	+50.4	Dark brown SILT, some f-c sand, trace clay, trace f gravel, some roots (moist) [TOPSOIL - 12" thick]				S-1	GRAB	Started excavating at 1:59 PM on 1/9/2023 Fine roots extend to 2.5' bgs. Large roots up to 3" extend to 1.5' bgs.			
	+49.4	Orangish brown f-c SAND, some silt, trace f-c gravel, trace roots (moist) [FILL]		+ 1 - 2		S-2	GRAB				
	+47.2	Grayish brown f-c SAND, some silt, trace f-c gravel, trace cobbles (moist) [FILL]		- 3 4		S-3	GRAB	-			
	+45.2	Light brown f-c SAND, some silt, trace clay, trace f-c gravel, trace cobbles, trace boulders (moist)		5		S-4	GRAB	Buried root/wood pieces encountered from 5.25' bgs to 6' bgs.			
	+42.4	Reddish brown ROCK FRAGMENTS, some silt, trace f-c gra (moist to wet) [DECOMPOSED ROCK]	avel	8				Rock fragments up to 2" in size encounter at 8' bgs to 15' bgs.			
				- - - 10		S-5	GRAB	_			
			Ţ	- 11 		ŵ	GR	Fast groundwater seepage observed at 11 bgs.			
				- 12 -							
				- 13 							
	+35.4			- 1 1 - 15				Finished excavating at 2:35 PM on			
		End of Test Pit at 15'.		- - - 16				A second excavating at 2:35 PM on 1/9/2023. Backfilled with excavated material upon completion.			
				<u>⊦</u> 17							

	pose	d King Arthur Court Warehouse Development	PROJEC		-'`	1	0085	1001	DATE		1/9/2023	3
OCATION NO	rth Bri	unswick, NJ	ELEVATI	ON					Approx	. el 50.3 (l	NAVD 88)
EXCAVAT	ION CO		DEPTH			15 f	ŀ	WATER LEV			EVEL - Com	
QUIPME	NT		FOREMAN					Cruz		sonnel Shannon Stewa		_ <u>_</u>
54	INTS	1000 Excavator				SAM		Ciuz		Shanno	ii Stewar	<u>ι</u>
Symbol	ELEV (feet)	DESCRIPTION		Depti Scale	h Ə	Number	Type	REMARKS				
· <u>*··</u> * <u>·</u>	+50.3	Dark brown SILT, trace f-c sand, trace clay, trace roots, trace f-c gravel (moist) [TOPSOIL - 9" thick]	; 	_ 0 -	-	S-1	GRAB	1/9/2023			on	
	+49.6	Dark grayish brown f-c SAND, some silt, some f-c gravel (moist) [FILL]		1 2		S-2	GRAB	Fine root	s extend to 2	2.5' bgs.		
	+48.3	Orangish brown f-c SAND, some silt, some clay, trace f-c gravel, trace roots (moist)		3		S-3	GRAB					
	+46.3	Brown to orangish brown f-c SAND, some silt, trace clay, trac f-c gravel (moist)	2e	4 5		S-4	GRAB					
	+43.3			6								
		Brown to orangish brown f-c SAND, some silt, trace f-c grave (moist)		8		S-5	GRAB					
	+41.3	Brown to orangish brown f-c SAND, some silt, some f-c grave trace cobbles (wet)	⊻[el,	9 10		S-6	GRAB	bgs from	ched water s west sidewa encountered	all of test p	oit.	
	+39.3	Dark reddish brown ROCK FRAGMENTS, some silt, trace f-o	; _	11	-		В	Rock frag	gments up to	o 3" in size	encounte	ere
	+38.3	sand, trace clay (wet) [DECOMPOSED ROCK] Dark reddish brown to orangish brown ROCK FRAGMENTS,		12		S-7	GRAB		bgs to 12' bg oundwater s		oserved a	t 1
		some silt, trace f-c sand, trace clay (wet) [WEATHERED ROCK]		13		S-8	GRAB					
				14								
/\//	+35.3	End of Test Pit at 15'.		15 16				1/9/2023	d with excav			
LA		GAN	-	— 17 -	-			completio	on.			

		d King Arthur Court Warehouse Development				10085	51001 1/9/2023
OCATIO	rth Br	unswick, NJ	ELEVAT	ION			Approx. el 49.2 (NAVD 88)
EXCAVAT	ION CO		DEPTH		14	ft	WATER LEVEL - First WATER LEVEL - Complex 11.75 ft ✓ -
EQUIPME	QUIPMENT						LANGAN PERSONNEL
SA	SANY SY80U Excavator				_	Eladio MPLE	o Cruz Emmanuel Carreno Guzman
Symbol	ELEV (feet)	DESCRIPTION		Depth Scale		Type	REMARKS
<u>, 14</u> , <u>, 17</u> , 7	+49.2	Dark reddish brown Sandy SILT, trace roots, trace fine grave (moist) [TOPSOIL - 8" thick]	əl -	— 0 —	- -	GRAB	Started excavating at 11:06 AM on 1/9/2023 Fine roots extend to 1.5' bgs.
		Grayish brown f-c SAND, some f-c gravel, some silt, trace cl trace roots (moist) [FILL]	ay,	1	S-2	GRAB	-
	+47.5	Reddish brown f-c SAND, some silt, some clay, trace fine gravel (moist) [FILL]		2	S-3	GRAB	-
	+45.2		-	3			
	140.2	Reddish brown f-c SAND, some silt, trace fine gravel, trace o (moist) [FILL]	lay -	- 5		GRAB	_
	+43.2	Reddish brown f-m SAND, trace silt (moist) [FILL]		- 6	S-5	GRAB	_
•••••• ••••••• •••••••••••••••••••••••	+42.2	Reddish brown Gravelly f-c SAND, trace silt, trace cobbles, trace buried roots (moist)	-	8	S-6	GRAB	Buried roots observed from 7' bgs to 8' bgs Cobbles encountered from 7' bgs to 12' bgs
• () • • () • • () •				9			
	+38.2	Orangish to grayish brown ROCK FRAGMENTS, some silt, some clay, trace f-c sand (wet) [DECOMPOSED ROCK]	V	11			Rock fragments up to 2" in size encountere from 11' bgs to 13.5' bgs. Orangish mottling observed from 11' bgs to
				12 13	S-7	GRAB	13.5' bgs. Fast groundwater seepage observed at 11.75' bgs.
	+35.7	Reddish brown ROCK FRAGMENTS, trace silt, trace f-c san (wet) [WEATHERED ROCK]	d	10	S-8	GRAB	Rock fragments up to 10" in size encountered from 13.5' bgs to 14' bgs.
		End of Test Pit at 14'.		15			Difficult digging observed from 13.5' bgs to 14' bgs. Bucket refusal encountered at 14' bgs. Finished excavating at 11:54 AM on 1/9/2023.
			-	16			Backfilled with excavated material upon completion.

		d King Arthur Court Warehouse Development			^R 100851001					1/9/2023
OCATION NO	n rth Bru	unswick, NJ	ELEVAT	ION				Approx. el 49.6 (NAVD 88)		
XCAVAT	ION CO		DEPTH		14	ft	WATER LEV	EL-First 3.ft ☑		EVEL - Comple
QUIPME	SANY SY80U Excavator							LANGAN PERS	DNNEL Carreno Guzman	
54		1800 Excavator				IADIO MPLE	Cruz	Emmanuel	Carreno	Guzman
ymbol	ELEV (feet)	DESCRIPTION		Depth Scale	Number	Type		REM	ARKS	
	+49.6	Reddish brown SILT, some f-c sand, trace roots (moist) [TOPSOIL - 8" thick]	-	— 0 — - -	- - - -	GRAB	Trace root	cavating at 1 ts extend to 2	2.5' bgs.	
		Dark brown Sandy SILT, some clay, trace f-c gravel, trace cobbles (moist) [FILL]	-	- 1	S-2	GRAB	Cobbles e	ncountered f	from 8" bg	s to 5' bgs.
				- 3						
~~~~	+44.6	Reddish brown f-c SAND, trace silt, trace f-c gravel, trace cla (moist)	ay _	- 5	S-3	GRAB	Small side to 7' bgs.	ewall collapse	e observe	d from 5' bạ
				8						
	+38.6	Reddish brown ROCK FRAGMENTS, some silt, some f-c sa	- - - - -	- - 10 - - - 11	- - - - - - - - -		De els free s		0# in size	
	+37.6	trace clay (moist) [DECOMPOSED ROCK]	-	- - - - 12	S-4	GRAB	from 11' b	ments up to gs to 12' bgs gging observ	S.	
		Reddish brown ROCK FRAGMENTS, trace silt, trace f-c sar (moist to wet) [WEATHERED ROCK]	nd 	- 13	S-5	GRAB	encounter	ments up to ed from 12' t groundwate	ogs to 14'	bgs.
	+35.6		-	- - - 14	-		13' bgs.	-		
		End of Test Pit at 14'.		- 15			Finished e 1/9/2023.	fusal encoun excavating at with excavat n.	: 10:55 AN	lon
				- 16						

	pose	d King Arthur Court Warehouse Development	PROJE		51001 DATE 1/9/2023					
OCATION	N	unswick, NJ	ELEVA	TION			Approx. el 52.8 (NAVD 88)			
XCAVAT	ion co ear Gr	NTRACTOR ound Improvement, Inc.	DEPTH		12 f	ť	WATER LEVEL - First WATER LEVEL - Comp 6.5 ft LANGAN PERSONNEL			
	SANY SY80U Excavator		FOREMAN			ladio IPLE	Cruz Emmanuel Carreno Guzman			
ymbol	ELEV (feet)	DESCRIPTION		Depth Scale	Number	Type	REMARKS			
<u>1,, <u>1,</u>, .<u>1,,</u> .<u>1,</u>,</u>	+52.8	Dark brown Sandy SILT, trace clay, trace roots (moist) [TOPSOIL - 8" thick]		0 	ې ۲	GRAB	Started excavating at 7:50 AM on 1/9/2023 Fine roots extend to 1.25' bgs.			
	+52.1	Orangish gray CLAY, some silt, trace f-c sand, trace roots, trace f-c gravel (moist) [FILL]		- 1 - - 1 -	S-2	GRAB	Gray mottling observed in fill from 8" bgs to 2.5' bgs.			
				 - 2 -			Black 1/4-inch-dia PVC utility encountered 1.5' bgs.			
	+50.3	Dark reddish brown Sandy ROCK FRAGMENTS, trace silt, trace clay (moist) [DECOMPOSED ROCK]		- 3 -	S-3	GRAB	Rock fragments up to 3" in size encountere from 2.5' bgs to 4' bgs.			
	+48.8	Dark brown ROCK FRAGMENTS, some f-c sand, trace silt, trace clay (moist) [DECOMPOSED ROCK]		4	S-4-S	GRAB	Rock fragments up to 8" in size encountere from 4' bgs to 5.5' bgs.			
	+47.3	Orangish to reddish brown ROCK FRAGMENTS, trace silt, trace clay, trace f-c sand (wet) [DECOMPOSED ROCK]	~	- 5 -  6 - 	S-5	GRAB	Rock fragments up to 1' in size encountere from 5.5' bgs to 11' bgs.			
				- 7 -			Slow groundwater seepage observed at 6. bgs from northeastern sidewall of test pit. Fast groundwater seepage observed at 7' bgs.			
				- 8 - 	-					
				_ 9 _ _ 9 _ 	-					
				_ 10 _ _ 10 _ 	-					
	+41.8	Orangish brown ROCK FRAGMENTS, trace silt, trace clay, trace f-c sand (wet) [WEATHERED ROCK]		- 11 - 	8-9-5 8-0-5	GRAB	Rock fragments encountered from 11' bgs 12' bgs.			
<u>, ) )</u>	+40.8	End of Test Pit at 12'.		- 12 -  	-		Bucket refusal encountered at 12' bgs. Finished excavating at 9:17 AM on 1/9/202 Backfilled with excavated material upon			
				- 13 -  	-		completion.			
				- 14 - 	-					
		GAN		 15						

ROJECT		LOG OF TEST		CT NUME				DATE 1/9/2023
OCATIO	N		ELEVAT					
XCAVAT	DEPTH					Approx. el 51.5 (NAVD 88) WATER LEVEL - First		
	OREM		12 f		7 ft ↓ LANGAN PERSONNEL			
SANY SY80U Excavator							ladio IPLE	Cruz Emmanuel Carreno Guzman
ymbol	ELEV (feet)	DESCRIPTION		Dept Scale	h e	Number	Type	REMARKS
<u>1,1,</u> 	+51.5	Dark brown SILT, some f-c sand, trace clay, trace roots (moin [TOPSOIL - 8" thick]	st)	— 0 · - -	-	ې 1-	GRAB	Started excavating at 9:20 AM on 1/9/2023 Large roots up to 2" in diameter extend to 3
	+50.8	Reddish brown SILT, some f-c sand, trace clay, trace f-c grav (moist)	/el	- - 1 -	-	S-2	GRAB	bgs. Fine roots extend to 4' bgs.
			-	- 2	-			
	+48.5	Reddish brown ROCK FRAGMENTS, some silt, trace clay (moist) [DECOMPOSED ROCK]	-	- 3 - - - - - 4	-	S-3	GRAB	Rock fragments up to 3" in size encountere from 3' bgs to 7' bgs.
			-	- 5	-	-		
	<		-	- 6	-	-		
	+44.5	Orangish to reddish brown ROCK FRAGMENTS, trace silt, trace f-c sand, trace clay (wet) [DECOMPOSED ROCK]	_¥	- 7 - - - - 8	-	S-4	GRAB	Rock fragments up to 10" in size encountered from 7' bgs to 12' bgs. Fast groundwater seepage observed at 7' bgs.
			-	- 9	-			
			-	- - 10	-			
	+40.5	Reddish brown ROCK FRAGMENTS, trace silt, trace f-c san trace clay (wet) [WEATHERED ROCK]	d, _	- 11 	-	S-5	GRAB	Difficult digging observed from 11' bgs to 1: bgs.
~	+39.5	End of Test Pit at 12'.		- 12 - - - 13	-			Bucket refusal encountered at 12' bgs. Finished excavating at 9:52 AM on 1/9/202 Backfilled with excavated material upon completion.
				- - - 14	-			
		GAN		- - 15 ·				

	pose	d King Arthur Court Warehouse Development		CT NUMBE		1(	085	1001 DATE 1/9/2023			3	
осатіоі. <b>No</b>		unswick, NJ	ELEVAT	ION				Δ	Approx. el 52.22 (NAVD 88)			
XCAVAT	Clear Ground Improvement, Inc.					15 ft		WATER LEVEL - 11.5 ft	First	WATER LE		
QUIPME	SANY SY80U Excavator							LAN	NGAN PERSO MMANUEl	DNNEL	Curmor	
5A						SAM			mmanuer	Carreno	Guzmar	<u> </u>
Symbol	ELEV (feet)	DESCRIPTION		Depth Scale		Number	Type		REMA	ARKS		
<u>, , , , , ,</u> . <u>, , , ,</u> , , , , , , , , , , , , , , ,	+52.2	Dark brown SILT, some f-c sand, trace clay, trace roots (moi [TOPSOIL - 13" thick]	st) .			ې 1	GRAB	Started exca Fine roots ex	-		n 1/9/202	23.
	+51.1	Orangish brown Silty f-c SAND, trace clay, trace roots (moist [FILL]	;)	- 1 - - - - 2 -		S-2	GRAB					
	+49.2	Brown f-c SAND, some silt, trace clay, trace fine gravel (mois [FILL]	st)	3		ა-კ	GRAB					
°. 0. 0	+47.2	Brown f-c SAND, some f-c gravel, trace silt, trace clay, trace cobbles, trace boulders (moist)	- - - - - - - - - - - - - - - - - - -	- 5		S-4	GRAB					
	+44.2	Orangish brown to dark gray SILT, some clay, trace f-c sand (moist)	-	- 7		S-5	GRAB	Slight orangis to 9.5' bgs.	sh mottling	g observed	d from 8'	' bį
	+42.7	Dark grayish brown ROCK FRAGMENTS, some silt, trace f- sand, trace clay (moist) [DECOMPOSED ROCK]	;	- 9 - - - 10		S-6	GRAB	Rock fragme from 9.5' bgs			encounte	ere
			-	- 11		S	GF	nom 0.0 bg3		ys.		
	+40.7	Dark reddish brown ROCK FRAGMENTS, trace silt, trace cla trace f-c sand (wet) [DECOMPOSED ROCK]	 ay,	- - - 12		S-7	GRAB	Fast groundv bgs. Rock fragme		•		1.
			-	- 13				encountered	•			
() 			-	- - 14 -								
<u>27.9</u>	+37.2	End of Test Pit at 15'.	-	- 15 - - 16				Finished exca Backfilled wit completion.				)2:
			-	- - - 17 -								

PROJECT NAME Proposed King Arthur Court Warehouse Development						10	0085	1001	12/1/2022
OCATIO	N	unswick, NJ	ELEVAT	ION					prox. el 51.5 (NAVD 88)
XCAVAT	DEPTH		,	E #		WATER LEVEL - First			
Clear Ground Improvement, Inc.				AN	1	15 ft		LANGA	N PERSONNEL
SA	SANY SY80U Excavator					Eladio SAMPLE		Cruz	Andrew Risser
ymbol	ELEV (feet)	DESCRIPTION		Depth Scale		Number	Type		REMARKS
· <u>24 · 1 ×</u>	+51.5	10YR 3/2 Dark grayish brown Silty f-m SAND, trace roots (moist) [TOPSOIL]	-	0 - - -	_	<u>ب</u>	GRAB		ing at 9:50 AM on 12/1/202 ots encountered to 12" bgs.
	+50.5	5YR 5/8 Yellowish red f-m SAND, some silt, trace f-c gravel trace cobbles, trace silt (moist)	, -	- 1					
	+49.0	7.5YR 4/6 Light brown f-m SAND, trace silt (moist)		- 3	- c - c	х-х х-х	GRAB		
			-	- - - - 4		~	В		
			-	- 5		ν. Υ	GRAB		
	+45.5	7.5YR 4/6 Light brown f-c SAND, some silt, some clay, trace gravel, trace cobbles (moist)	e f-c	- 6		S-3A	GRAB		
	+43.5		-	- 7 - - - - 8					
	(	2.5YR 3/2 Dark reddish brown SILT, some f-c sand, trace ro fragments (moist) [DECOMPOSED ROCK]	ock	- 9	- 0	2 4	GRAB		
		2.5YR 3/2 Dark reddish brown SILT, some f-c sand, trace ro	pck	- 10				Sample observe	ed to be wet.
/o/ 	¢	fragments (wet) [DECOMPOSED ROCK]	-	- - - 11	- L - C -	ς. Υ	GRAB		
		10YR 2/2 Dark brown SILT, some f-c sand, trace rock fragments (wet) [DECOMPOSED ROCK]	-	12		.0	GRAB	Groundwater se	epage observed at 12 ft bg
		2.5YR 6/2 Light brownish gray SILT, some f-c sand, trace ro fragments (wet) [DECOMPOSED ROCK]	ock	- 13	+	بې	GRAB G	Orangish mottlin bottom of excav	ng observed from 13 ft to ation.
			-	- 14 			-		
/ /.	+36.5	End of Test Pit at 15 ft.		- 15 - - - 16				12/1/2022. Test pit backfille	ting at 10:45 AM on ed with excavated material
			-					upon completior	۱. 

Pro	PROJECT NAME Proposed King Arthur Court Warehouse Development				۲ 1	0085	1001	DATE	12/1/2022
IOITADC No	rth Bru	unswick, NJ	ELEVAT	el 49.3 (NAVD 88)					
		NTRACTOR bund Improvement, Inc.	DEPTH		14 f	ft		EVEL - First 1.5 ft ⊥	WATER LEVEL - Complet
SANY SY80U Excavator			FOREM	AN			Cruz	LANGAN PERS	SONNEL Andrew Risser
ymbol	ELEV (feet)	DESCRIPTION		Depth Scale	SAN Number	Type		REN	IARKS
<u>1.</u>	+49.3	10YR 3/2 Dark grayish brown Silty f-m SAND, trace roots		_ 0 _	ž		Started	excavating at	10:50 AM on
<u>x1.1, x1</u> <u>1, x1.</u>	+48.3	(moist) [TOPSOIL]	-		°- 1-2	GRAB	12/1/202		
	140.5	7.5YR 4/6 Light brown Silty f-m SAND (moist)	-	· ·					
			-	2		B			
			-	- 3	S-2	GRAB			
			-	- · ·					
	+45.3 -	7.5 YR 5/6 Light brown f-m SAND, trace silt, trace clay, trace fine gravel (moist)	e	- 4 -	S-3	GRAB			
			-	- 5		Ū			
			-						
			-						
			-	- 7 -					
			-	- 8					
			-	- · ·	S 4	GRAB			
			-	- 9 · - ·					
<u>) )</u>	+39.3	2.5YR 3/2 Dark reddish brown SILT, some f-c sand, trace ro	ock -	- 10					
		fragments (moist) [DECOMPOSED ROCK]	-	- 11	-				
			Ţ		S-5	GRAB	Ground	water seenad	e observed at 11.5 ft
$) \cdot ).$	+37.3	2.5YR 3/2 Dark reddish brown WEATHERED SHALE (wet)		12			bgs.	te digging at 1	
			-	- 13	-				
			-	- · ·	S-6	GRAB			
<i>u ~ l</i> .	+35.3	End of Test Pit at 14 ft.		- 14 -					ntered at 14 ft bgs. t 11:45 AM on
			-	- 15			12/1/202 Test pit	22. backfilled with	n excavated material
			-	- 16 -			upon co	mpletion.	
			-						
		GAN		- 17	1				

ROJECT Pro		d King Arthur Court Warehouse Development	PROJE	CT NUMBE	R	10	0085	DATE		12/1/202	2	
OCATIO	N		ELEVA	EVATION					Annroy	Approx. el 54.5 (NAVD 88)		
XCAVAT	ION CO		DEPTH	DEPTH 11.5 ft				WATER LE			EVEL - Cor	
QUIPME	NT		FOREM		11.5			1	$\frac{10 \text{ ft}}{ \text{LANGAN PER} }$		-	<u> </u>
SA	INY S'	Y80U Excavator			Eladio			Cruz		Andr	ew Risse	۶r
ymbol	ELEV (feet)	DESCRIPTION		Depth Scale		Number Type			REM	IARKS		
	+54.5 +54.0		oist)	0 - -	-	S-1		Started excavating at 11:50 AM on 12/1/2022. Fine roots encountered to 6" bgs.				
	+49.5	2.5YR 3/2 Dark reddish brown Sandy ROCK FRAGMENTS, trace silt, trace clay (moist) [DECOMPOSED ROCK]		- 1 - 2 - 3 - 4 - 5 - 6 - 7	S-3 S-1 S-2		GRAB GRAB					
	+45.5	2.5YR 3/2 Reddish brown SILT, some f-c sand, trace rock fragments (moist to wet) [DECOMPOSED ROCK]	 	- 8 - 8 - 9 - 10		r D	GRAB		e digging at s	-		
	+43.5		-	- - - - - 11			0	to hard d	encountered ligging at 10 agments enc	ft bgs.	-	
$\lambda$	+43.0	2.5YR 3/2 Reddish brown WEATHERED SHALE (wet)		-			GRAB					
	743.0	End of Test Pit at 11.5 ft.		- - - 12 -	-			Finished 12/1/202		at 12:22 Pl	V on	
			-	- - - 13				Test pit b upon cor	backfilled wit npletion.	h excavate	ed materi	al
			-	- - - 14 -								
		<b>GAN</b>	-	- - 15	_							

	pose	d King Arthur Court Warehouse Development	PROJEC	12/1/2022							
OCATION NO		unswick, NJ	ELEVATI	ox. el 55.9 (NAVD 88)							
XCAVAT	ION CO								WATER LEVEL - Complete		
QUIPME	NT		OREMA					LANGAN P	ERSONNEL Andrew Risser		
- 57			<u> </u>			SAM		Cluz	Andrew Kissei		
ymbol					ן פ	Number	Type	RI	EMARKS		
$\frac{1}{2}$ ,	+55.9	10YR 3/3 Dark brown Silty f-m SAND, trace roots (moist) [TOPSOIL]	0	_ 0 -	-	S-1	GRAB	Started excavating at 12:26 PM on 12/2/2022.			
	100.2	7.5YR 4/6 Light brown f-m SAND, trace silt (moist)		1		S-2	GRAB				
	+53.9	5YR 3/4 Dark reddish brown to 7.5YR 6/8 reddish yellow to 7.5YR 7/1 light gray Sandy CLAY, trace cobbles, trace silt (moist)		2 3				Orangish mottling observed from 2 to 5 ft bgs.			
			-	4		S-3	GRAB				
	+50.9	2.5YR 3/2 Dark reddish brown SILT, some f-c sand, trace roo fragments (moist) [DECOMPOSED ROCK]	- 	5		S-4	GRAB				
		2.5YR 3/2 Dark reddish brown to 7.5YR 7/1 light gray CLAY, some f-c sand, trace silt, trace rock fragments (moist) [DECOMPOSED ROCK]		6 7		S-5	GRAB	Orangish mottling o bgs.	observed from 6 to 8 ft		
	+47.4	2.5YR 3/2 Dark reddish brown to 7.5YR 7/1 light gray		8				Moderate digging a	at 8 ft bgs.		
		WEATHERED SHALE (moist)	-	9		S-6	GRAB				
				10		S-7	GRAB	Hard digging at 10	ft bgs.		
				11							
<u> \`</u>	+44.4	End of Test Pit at 11.5 ft.		12					served at 11.5 ft bgs. ountered at 11.5 ft bgs. g at 1:10 PM on		
				13				Test pit backfilled v upon completion.	vith excavated material		
				14							
		GAN	Ľ	— 15 -							

ROJECT Pro		d King Arthur Court Warehouse Development	FROJEC	T NUMB		1	0085	51001	DATE	12	2/1/2022
OCATION	N		ELEVAT	ION					Approx. el 53.3 (NAVD 88)		
KCAVAT	ION CO	NTRACTOR	DEPTH			10		WATER L	EVEL - First		VEL - Comple
QUIPME	NT		FOREM	EMAN		12 ft			N.E. ⊻ LANGAN PER	SONNEL	
SA	NY S'	Y80U Excavator				Eladio SAMPLE		Cruz		Andrev	w Risser
ymbol	ELEV (feet)	DESCRIPTION		Depti Scale	h Ə	Number	Type		REM	ARKS	
<u>17</u> . <u>17.</u> <u>14.17</u> . <u>1</u> 12. 17. <u>1</u>	+53.3	.3 10YR 3/2 Dark grayish brown Silty f-m SAND, trace roots (moist) [TOPSOIL]				S-1	GRAB		excavating at medium roots		
	+52.4	7.5YR 4/6 Light brown f-c SAND, some clay, trace silt (moist [FILL]	i) -	2							
			-	- 3		S-2	GRAB				
			-	4							
$\sim$ $\sim$	+48.3	7.5YR 4/6 Light brown Gravelly f-c SAND, trace silt, trace cla trace cobbles (moist)	ay,	- 5 - - 6							
			-	. 7		S-3	GRAB				
	+45.3	2.5YR 3/2 Dark reddish brown SILT, some f-c sand, trace ro fragments (moist) [DECOMPOSED ROCK]	ck _	8		S-4	GRAB				
		7.5YR 5/6 Light brown to 7.5YR 5/1 gray SILT, some f-c san trace rock fragments (moist) [DECOMPOSED ROCK]	d,	9 - 9 - 10		S-5	GRAB				
				- 11					sh mottling obs om of excavatio		11.5 ft bg
<u></u>	+41.3	End of Test Pit at 12 ft bgs.		12				12/1/20			
			-	13					backfilled with bompletion.	n excavated	material
			-	- - 14 -							
		<b>GAN</b>		— 15 ·	_						

	pose	d King Arthur Court Warehouse Development		CT NUMBI		1	0085	51001	DO1 DATE 12/1/2022		
IOITADC		unswick, NJ	ELEVA	TION				Approx	Approx. el 53.6 (NAVD 88)		
XCAVAT	ION CO	NTRACTOR	DEPTH			10.5	4	WATER LE	VEL - First	WATER LEV	
QUIPMEI	NT	ound Improvement, Inc.	FOREN	EMAN		12 ft			N.E. ⊻   LANGAN PERS	SONNEL	
SA	NY S	Y80U Excavator						Cruz		Andrew	/ Risser
ymbol	ELEV (feet)	DESCRIPTION		Depth Scale		SAN Number	PLE ed.		REM	ARKS	
<u>14: 11.</u> • <u>2</u> 4-14: 14 • <u>1</u> -14: 14	+53.6	10YR 3/2 Dark grayish brown Silty f-m SAND, trace roots (moist) [TOPSOIL]		0 -  	-	S-1	GRAB		excavating at acountered at		12/1/202
	+52.7	7.5YR 4/6 Light brown f-c SAND, some clay, trace silt (mois [FILL]	t)	- 1 - - - - 2							
				- - - - 3		S-2	GRAB				
				- - - 4 -							
	+48.1	7.5YR 4/6 Light brown f-c SAND, some f-c gravel, some clay	/	- 5 - 5 -							
		trace silt (moist)	,	- 6	-	ņ	AB				
0. ( 0. ° 3. 0				- - 7 - -		S-3	GRAB				
	+45.6	10YR 5/6 Yellowish brown to 10YR 5/2 grayish brown f-c SAND, some f-c gravel, some clay, trace silt, some roots (moist)		- 8				Mottling	observed fror	n 8 to 10 ft l	bgs.
0. ( (). °				- 9 - -		S-4	GRAB				
	+43.6	2.5YR 3/2 Dark reddish brown SILT, some f-c sand, trace ro fragments (moist) [DECOMPOSED ROCK]	ck	- 10 - -	-						
				- 11 - -		S-5	GRAB				
<u>م . ر</u>	+41.6	End of Test Pit at 12 ft.		- 12 - - -				12/1/202	excavating a 2. backfilled with		
				- 13 - -				upon cor			
				- - 14 - -							
		<b>GAN</b>		_ 15 -	-						

## **APPENDIX B**

#### **Selected Test Pit Photographs**

LANGAN





Photo 1: Profile of Test Pit SHGW-1.



Photo 2: Excavated material from Test Pit SHGW-1.

Page 2 of 14



Photo 3: Different view of soil profile in Test Pit SHGW-1.



Photo 4: Profile of Test Pit SHGW-2.





Photo 5: Excavated material from Test Pit SHGW-2.



Photo 6: Different view of soil profile in Test Pit SHGW-2.





Photo 10: Profile of Test Pit SHGW-3.



Photo 11: Excavated material from Test Pit SHGW-3.





Photo 12: Different view of soil profile in Test Pit SHGW-3.

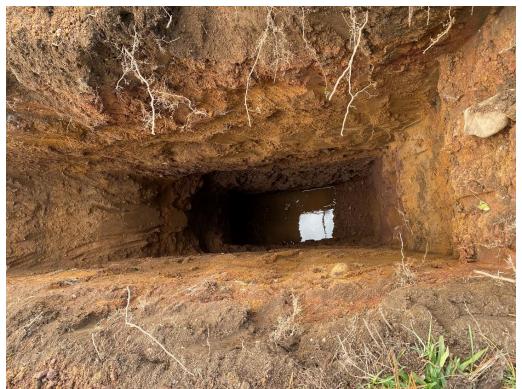



Photo 13: Profile of Test Pit TP-1.





Photo 14: Excavated material from Test Pit TP-1.



Photo 15: Different view of soil profile in Test Pit TP-1.





Photo 16: Profile of Test Pit TP-2.



Photo 17: Excavated material from Test Pit TP-2.



Photo 18: Different view of soil profile in Test Pit TP-2.



Photo 19: Profile of Test Pit TP-3.



Photo 20: Excavated material from Test Pit TP-3.



Photo 21: Different view of soil profile in Test Pit TP-3.



Photo 22: Profile of Test Pit TP-4.



Photo 23: Excavated material from Test Pit TP-4.





Photo 24: Different view of soil profile in Test Pit TP-4.

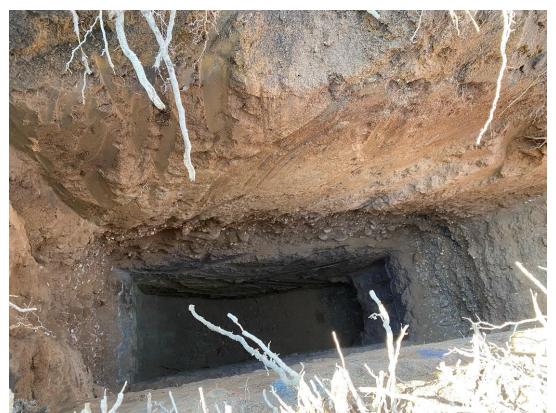



Photo 25: Profile of Test Pit TP-11.





Photo 26: Excavated material from Test Pit TP-11.



Photo 27: Different view of soil profile in Test Pit TP-11.





Photo 28: Profile of Test Pit TP-12.



Photo 29: Excavated material from Test Pit TP-12.

Page 14 of 14



Photo 30: Different view of soil profile in Test Pit TP-12.

\\langan.com\data\PAR\data0\100851001\Project Data_Discipline\Geotechnical\Geotech Investigation\2022 SWM Investigation\Test Pit Photos\Selected Profile Test Pit Photos_100851001 (as of 05-03-2023).docx





Photo 1: Profile of Test Pit STP-1.



Photo 2: Excavated material from Test Pit STP-1.

Photographs taken on 9 and 10 January 2023 Selected Test Pit Photographs Proposed Warehouse Development Supplemental SWM Investigation North Brunswick Township, Middlesex County, New Jersey Langan Project No. 100851001

Page 2 of 22



Photo 3: Different view of soil profile in Test Pit STP-1.



Photo 4: Profile of Test Pit STP-2.

Page 3 of 22



Photo 5: Excavated material from Test Pit STP-2.



Photo 6: Different view of soil profile in Test Pit STP-2.





Photo 10: Profile of Test Pit STP-4.



Photo 11: Excavated material from Test Pit STP-4.

Selected Test Pit PhotographsPhotographs taken on 9 and 10 January 2023Proposed Warehouse DevelopmentSupplemental SWM InvestigationNorth Brunswick Township, Middlesex County, New JerseyJanuary 2023Langan Project No. 100851001Page 5 of 22



Photo 12: Different view of soil profile in Test Pit STP-4.



Photo 13: Profile of Test Pit STP-5.



Photo 14: Excavated material from Test Pit STP-5.



Photo 15: Different view of soil profile in Test Pit STP-5.





Photo 16: Profile of Test Pit STP-6.



Photo 17: Excavated material from Test Pit STP-6.



Photo 18: Different view of soil profile in Test Pit STP-6.



Photo 19: Profile of Test Pit STP-7.

Page 9 of 22



Photo 20: Excavated material from Test Pit STP-7.



Photo 21: Different view of soil profile in Test Pit STP-7.

Page 10 of 22



Photo 22: Profile of Test Pit STP-8.



Photo 23: Excavated material from Test Pit STP-8.





Photo 24: Different view of soil profile in Test Pit STP-8.



Photo 25: Profile of Test Pit STP-9.

Selected Test Pit PhotographsPhotographs taProposed Warehouse DevelopmentSuNorth Brunswick Township, Middlesex County, New JerseyLangan Project No. 100851001

Page 12 of 22



Photo 26: Excavated material from Test Pit STP-9.



Photo 27: Different view of soil profile in Test Pit STP-9.

Page 13 of 22



Photo 28: Profile of Test Pit STP-10.



Photo 29: Excavated material from Test Pit STP-10.





Photo 30: Different view of soil profile in Test Pit STP-10.



Photo 31: Profile of Test Pit STP-11.

Page 15 of 22



Photo 32: Excavated material from Test Pit STP-11.

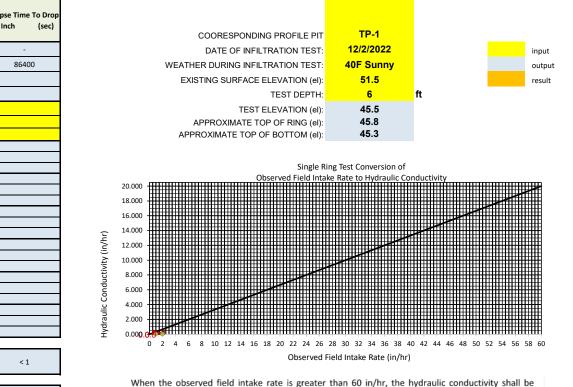


Photo 33: Different view of soil profile in Test Pit STP-11.

\\langan.com\data\PAR\data0\100851001\Project Data_Discipline\Geotechnical\Geotech Investigation\2023 Supplemental Investigation\Test Pit Photos\Selected Profile Test Pit Photos_100851001 (as of 1-11-2023).docx

# **APPENDIX C**

### Single Ring Infiltration Test Results


LANGAN

100851001

**King Arthur Court** 

North Brunswick, New Jersey

#### FIELD SINGLE RING INFILTRATION TEST TP-1A



When the observed field intake rate is greater than 60 in/hr, the hydraulic conductivity shall be reported as "greater than 20 in/hr." When the observed field intake rate is less than 1 in/hr, the hydraulic conductivity shall be reported as "less than 1 in/hr."

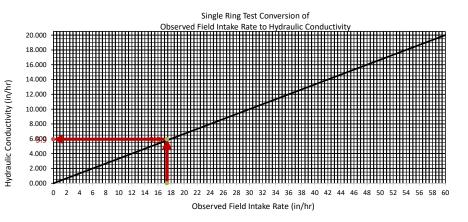
	Water Refill	Start Time	Water Level Reading (inches)	Elaspse Time to Drop 1 inch (hr:min:sec)	Elapse Time To Drop 1 Inch (sec)								
J	x	10:22 AM	3	-	-								
PRE-SOAK		11:22 AM	2.625	0:00:00.0	86400								
PRE-0													
-													
#1	TEST FAILED PRESOAK												
TEST #1	TEST TERMINATED												
			SHELBY TUBE CO	DLLECTED									
TEST #2													
TES													
#3													
TEST #3													
TEST #4													
TEST #5													
Ĩ													
9#													
TEST #6													
TEST #7													
F													
			<1										

Water Level Flashse Time to

Rate (sec/inch)	< 1	
Average Observed Field Intake Rate (inch/hr)	<1	
Hydraulic Conductivity (inch/hr)	<1	(see graph)

#### NOTES:

1 Test performed per Chapter 12, Subsection A5: Single Ring Infiltration Test of the November 2020 NJSBMP Manual


#### LANGAN

King Arthur Court

North Brunswick, New Jersey

### FIELD SINGLE RING INFILTRATION TEST TP-2A

COORESPONDING PROFILE PIT	TP-2		
DATE OF INFILTRATION TEST:	12/2/2022		
WEATHER DURING INFILTRATION TEST:	42F Sunny		
EXISTING SURFACE ELEVATION (el):	49.3		
TEST DEPTH:	4.5	ft	
TEST ELEVATION (el):	44.8		
APPROXIMATE TOP OF RING (el):	45.1		
APPROXIMATE TOP OF BOTTOM (el):	44.6		

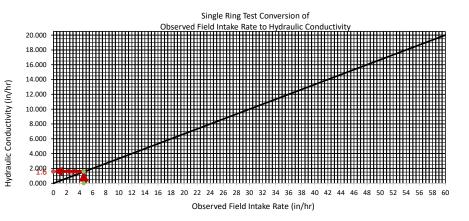


When the observed field intake rate is greater than 60 in/hr, the hydraulic conductivity shall be reported as "greater than 20 in/hr." When the observed field intake rate is less than 1 in/hr, the hydraulic conductivity shall be reported as "less than 1 in/hr."

	Water Refill	Start Time	Water Level Reading (inches)	Elaspse Time to Drop 1 inch (hr:min:sec)	Elapse Time To Drop 1 Inch (sec)
	x	10:45 AM	3	-	-
PRE-SOAK		10:57 AM	2	0:02:40.0	160.0
Re-S		11:00 AM	1	0:06:11.0	371.0
<u>a</u>		11:02 AM	0	0:07:48.0	468.0
Ħ	x	11:03 AM	3	-	-
TEST #1		11:06 AM	2	0:03:25.0	205.0
<u>.</u>					
#2	x	11:07 AM	3	-	-
TEST		11:11 AM	2	0:03:28.0	208.0
-	x	11:12 AM	3	-	-
TEST #3		11:15 AM	2	0:03:27.0	207.0
-	x	11:16 AM	3		-
TEST #4	~	11:19 AM	2	0:03:28.0	208.0
Ë.					
#5	x	11:20 AM	3	-	-
TEST #5		11:23 AM	2	0:03:27.0	207.0
TEST #6					
<u> </u>					
TEST #7					
TES					
			Average Obser	rved Field Intake	207.0

Average Observed Field Intake Rate (sec/inch)	207.0	
Average Observed Field Intake	17.4	
Rate (inch/hr)	17.4	
Hydraulic Conductivity (inch/hr)	5.9	(see graph)

#### NOTES:


1 Test performed per Chapter 12, Subsection A5: Single Ring Infiltration Test of the November 2020 NJSBMP Manual

**King Arthur Court** 

North Brunswick, New Jersey

### FIELD SINGLE RING INFILTRATION TEST TP-3A

COORESPONDING PROFILE PIT	TP-3		
DATE OF INFILTRATION TEST:	12/2/2022		
WEATHER DURING INFILTRATION TEST:	42F Sunny		
EXISTING SURFACE ELEVATION (el):	54.9		
TEST DEPTH:	5	ft	
TEST ELEVATION (el):	49.9		
APPROXIMATE TOP OF RING (el):	50.2		
APPROXIMATE TOP OF BOTTOM (el):	49.7		

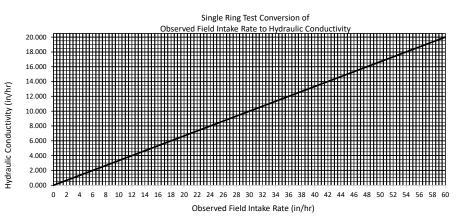


When the observed field intake rate is greater than 60 in/hr, the hydraulic conductivity shall be reported as "greater than 20 in/hr." When the observed field intake rate is less than 1 in/hr, the hydraulic conductivity shall be reported as "less than 1 in/hr."

	Water Refill	Start Time	Water Level Reading (inches)	Elaspse Time to Drop 1 inch (hr:min:sec)	Elapse Time To Drop 1 Inch (sec)
	x	11:34 AM	3	-	-
PRE-SOAK		11:38 AM	2	0:03:56.0	236.0
RE-S		11:40 AM	1	0:12:34.0	754.0
۵.		11:53 AM	0	0:19:12.0	1152.0
Ħ	x	11:54 AM	3	-	-
TEST #1		12:04 PM	2	0:09:43.0	583.0
Ħ					
#2	x	12:05 PM	3	-	-
TEST #2		12:14 PM	2	0:09:49.0	589.0
-	x	12:15 PM	3	_	-
TEST #3		12:26 PM	2	0:11:07.0	667.0
Ë.					
#4	x	12:27 PM	3	-	-
TEST #4		12:38 PM	2	0:11:20.0	680.0
	x	12:39 PM	3	_	-
TEST #5	^	12:55 PM	2	0:12:55.0	775.0
TES		12.0111	-	0.121.0010	77510
9#	x	12:52 PM	3	-	-
TEST #6		1:05 PM	2	0:12:56.0	776.0
<u> </u>					
£#	x	1:06 PM	3	-	-
TEST		1:19 PM	2	0:12:55.0	775.0

Average Observed Field Intake Rate (sec/inch)	775.0	
Average Observed Field Intake Rate (inch/hr)	4.6	
Hydraulic Conductivity (inch/hr)	1.6	(see graph)

#### NOTES:


1 Test performed per Chapter 12, Subsection A5: Single Ring Infiltration Test of the November 2020 NJSBMP Manual

King Arthur Court

North Brunswick, New Jersey

### FIELD SINGLE RING INFILTRATION TEST TP-4A

COORESPONDING PROFILE PIT	TP-4		
DATE OF INFILTRATION TEST:	12/2/2022		
WEATHER DURING INFILTRATION TEST:	45F Sunny		
EXISTING SURFACE ELEVATION (el):	55.9		
TEST DEPTH:	6	ft	
TEST ELEVATION (el):	49.9		
APPROXIMATE TOP OF RING (el):	50.2		
APPROXIMATE TOP OF BOTTOM (el):	49.7		



When the observed field intake rate is greater than 60 in/hr, the hydraulic conductivity shall be reported as "greater than 20 in/hr." When the observed field intake rate is less than 1 in/hr, the hydraulic conductivity shall be reported as "less than 1 in/hr."

	Water Refill	Start Time	Water Level Reading (inches)	Elaspse Time to Drop 1 inch (hr:min:sec)	Elapse Time To Drop 1 Inch (sec)
	x	11:48 AM	3	-	-
PRE-SOAK		11:48 AM	2	0:00:19.2	19.2
RE-9		11:48 AM	1	0:00:38.1	38.1
-		11:48 AM	0	0:00:54.2	54.2
#1	x	11:51 AM	3	-	-
TEST		11:51 AM	2	0:00:14.4	14.4
F					
#2	x	11:55 AM	3	-	-
TEST #2		11:55 AM	2	0:00:23.0	23.0
<u> </u>	x	11:57 AM	3		
Ť.	~	11:57 AM	2	0:00:23.1	23.1
TEST #3		11.37 AW	2	0.00.23.1	23.1
4	x	11:59 AM	3	-	-
TEST #4		11:59 AM	2	0:00:23.7	23.7
¥	x	12:00 PM	3	-	-
TEST #5		12:00 PM	2	0:00:24.7	24.7
. 9#	x	12:02 PM	3	-	-
TEST #		12:03 PM	2	0:00:24.9	24.9
-					
Т#7					
TEST					

Average Observed Field Intake Rate (sec/inch)	24.9	
Average Observed Field Intake Rate (inch/hr)	144.8	
Hydraulic Conductivity	49.5	(see graph)

#### NOTES:

1 Test performed per Chapter 12, Subsection A5: Single Ring Infiltration Test of the November 2020 NJSBMP Manual

**King Arthur Court** 


North Brunswick, New Jersey

Water Refill

Start Time

# FIELD SINGLE RING INFILTRATION TEST TP-11A

COORESPONDING PROFILE PI	T <mark>TP-11</mark>		
DATE OF INFILTRATION TEST	1 <b>2/2/2022</b>		
WEATHER DURING INFILTRATION TEST	: 35F Cloudy		
EXISTING SURFACE ELEVATION (el	: <b>53.3</b>		
TEST DEPTH	:: <b>3.5</b>	ft	
TEST ELEVATION (el	<b>49.8</b>		
APPROXIMATE TOP OF RING (el	: <b>50.1</b>		
APPROXIMATE TOP OF BOTTOM (el	: <b>49.6</b>		

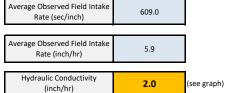


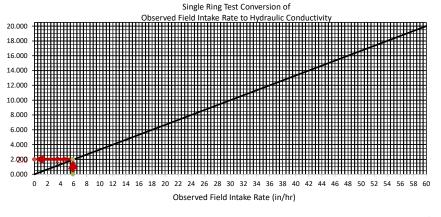
Water Level

Reading

(inches)

Elaspse Time to


Drop 1 inch


(hr:min:sec)

Elapse Time To Drop

(sec)

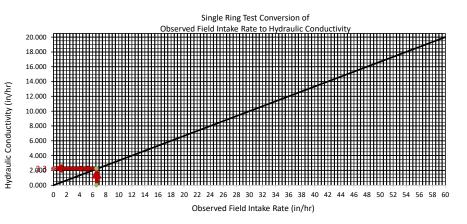
1 Inch





When the observed field intake rate is greater than 60 in/hr, the hydraulic conductivity shall be reported as "greater than 20 in/hr." When the observed field intake rate is less than 1 in/hr, the hydraulic conductivity shall be reported as "less than 1 in/hr."

#### NOTES:


1 Test performed per Chapter 12, Subsection A5: Single Ring Infiltration Test of the November 2020 NJSBMP Manual

**King Arthur Court** 

North Brunswick, New Jersey

# FIELD SINGLE RING INFILTRATION TEST **TP-11B**

COORESPONDING PROFILE PIT	TP-11		
DATE OF INFILTRATION TEST:	12/2/2022		
WEATHER DURING INFILTRATION TEST:	35F Cloudy		
EXISTING SURFACE ELEVATION (el):	53.3		
TEST DEPTH:	5.5	ft	
TEST ELEVATION (el):	47.8		
APPROXIMATE TOP OF RING (el):	48.1		
APPROXIMATE TOP OF BOTTOM (el):	47.6		

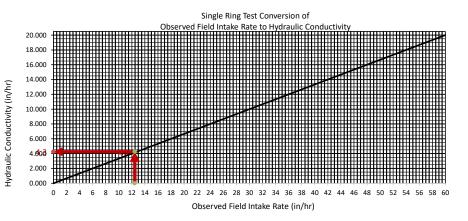


When the observed field intake rate is greater than 60 in/hr, the hydraulic conductivity shall be reported as "greater than 20 in/hr." When the observed field intake rate is less than 1 in/hr, the hydraulic conductivity shall be reported as "less than 1 in/hr."

	Water Refill	Start Time	Water Level Reading (inches)	Elaspse Time to Drop 1 inch (hr:min:sec)	Elapse Time To Drop 1 Inch (sec)
U	x	8:58 AM	3	-	-
OA		9:04 AM	2	0:05:44.0	344.0
PRE-SOAK		9:14 AM	1	0:16:03.0	963.0
۵.		9:24 AM	0	0:25:42.0	1542.0
Ħ	x	9:25 AM	3	-	-
TEST #1		9:33 AM	2	0:08:35.0	515.0
Ħ					
#2	x	9:34 AM	3	-	-
TEST #2		9:43 AM	2	0:09:05.0	545.0
#3	x	9:44 AM	3	-	-
TEST #		9:53 AM	2	0:09:04.0	544.0
		9:54 AM	3		
TEST #4	x	10:03 AM	2	0:09:06.0	- 546.0
TES		10:00 /	-	0.001.0010	5 1010
ŧ	x	10:04 AM	3	-	-
TEST #5		10:13 AM	2	0:09:05.0	545.0
ST #6					
TEST					
#7					
TEST					
			Average Obser	rved Field Intake	545.0

	Average Observed Field Intake Rate (sec/inch)	545.0	
ĺ	Average Observed Field Intake Rate (inch/hr)	6.6	
[	Hydraulic Conductivity	2.3	(see graph)

#### NOTES:


1 Test performed per Chapter 12, Subsection A5: Single Ring Infiltration Test of the November 2020 NJSBMP Manual

King Arthur Court

North Brunswick, New Jersey

# FIELD SINGLE RING INFILTRATION TEST TP-12A

COORESPONDING PROFILE PIT	TP-12		
DATE OF INFILTRATION TEST:	12/2/2022		
WEATHER DURING INFILTRATION TEST:	35F Cloudy		
EXISTING SURFACE ELEVATION (el):	53.6		
TEST DEPTH:	3.5	ft	
TEST ELEVATION (el):	50.1		
APPROXIMATE TOP OF RING (el):	50.4		
APPROXIMATE TOP OF BOTTOM (el):	49.9		

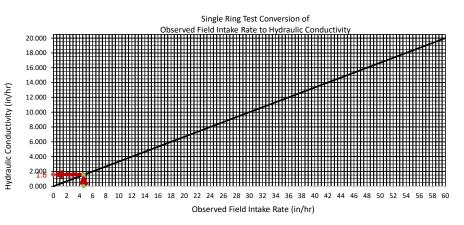


When the observed field intake rate is greater than 60 in/hr, the hydraulic conductivity shall be reported as "greater than 20 in/hr." When the observed field intake rate is less than 1 in/hr, the hydraulic conductivity shall be reported as "less than 1 in/hr."

	Water Refill	Start Time	Water Level Reading (inches)	Elaspse Time to Drop 1 inch (hr:min:sec)	Elapse Time To Drop 1 Inch (sec)
	x	8:30 AM	3	-	-
PRE-SOAK		8:33 AM	2	0:02:56.0	176.0
		8:36 AM	1	0:06:08.0	368.0
		8:40 AM	0	0:09:23.0	563.0
#1	x	8:43 AM	3	-	-
TEST #1		8:48 AM	2	0:04:41.0	281.0
F					
#2	x	8:49 AM	3	-	-
TEST #2		8:55 AM	2	0:04:43.0	283.0
#3	x	8:57 AM	3	-	-
TEST #		9:02 AM	2	0:04:46.0	286.0
		9:03 AM	3	_	
TEST #4	X	9:03 AM 9:08 AM	2	0:04:48.0	- 288.0
TES		9.08 AIVI	2	0.04.48.0	288.0
#5	x	9:09 AM	3	-	-
TEST #5		9:14 AM	2	0:04:49.0	289.0
TEST #6					
TEX					
L#1					
TEST					

	Average Observed Field Intake Rate (sec/inch)	289.0	
	Average Observed Field Intake Rate (inch/hr)	12.5	
ſ	Hydraulic Conductivity (inch/hr)	4.3	(see graph)

#### NOTES:


1 Test performed per Chapter 12, Subsection A5: Single Ring Infiltration Test of the November 2020 NJSBMP Manual

**King Arthur Court** 

North Brunswick, New Jersey

# FIELD SINGLE RING INFILTRATION TEST TP-12B

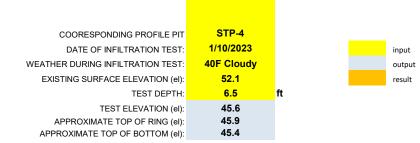
COORESPONDING PROFILE PIT DATE OF INFILTRATION TEST: WEATHER DURING INFILTRATION TEST: EXISTING SURFACE ELEVATION (el): TEST DEPTH: TEST ELEVATION (el): APPROXIMATE TOP OF RING (el): 48.4											
DATE OF INFILTRATION TEST:       12/2/2022         WEATHER DURING INFILTRATION TEST:       35F Cloudy         EXISTING SURFACE ELEVATION (el):       53.6         TEST DEPTH:       5.5       ft         TEST ELEVATION (el):       48.1         APPROXIMATE TOP OF RING (el):       48.4											
WEATHER DURING INFILTRATION TEST:       35F Cloudy         EXISTING SURFACE ELEVATION (el):       53.6         TEST DEPTH:       5.5         TEST ELEVATION (el):       48.1         APPROXIMATE TOP OF RING (el):       48.4	COORESPONDING PROFILE PIT	TP-12									
EXISTING SURFACE ELEVATION (el): 53.6 TEST DEPTH: 5.5 ft TEST ELEVATION (el): 48.1 APPROXIMATE TOP OF RING (el): 48.4	DATE OF INFILTRATION TEST:	12/2/2022					in	inpu	input	input	input
TEST DEPTH:         5.5         ft           TEST ELEVATION (el):         48.1           APPROXIMATE TOP OF RING (el):         48.4	WEATHER DURING INFILTRATION TEST:	35F Cloudy					0	out	outpu	output	output
TEST ELEVATION (el):         48.1           APPROXIMATE TOP OF RING (el):         48.4	EXISTING SURFACE ELEVATION (el):	53.6					re	resu	result	result	result
APPROXIMATE TOP OF RING (el): 48.4	TEST DEPTH:	5.5	ft								
	TEST ELEVATION (el):	48.1									
	APPROXIMATE TOP OF RING (el):	48.4									
APPROXIMATE TOP OF BOTTOM (el): 47.3	APPROXIMATE TOP OF BOTTOM (el):	47.9									

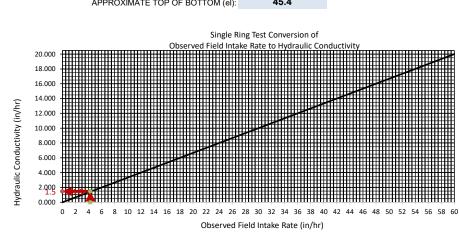


When the observed field intake rate is greater than 60 in/hr, the hydraulic conductivity shall be reported as "greater than 20 in/hr." When the observed field intake rate is less than 1 in/hr, the hydraulic conductivity shall be reported as "less than 1 in/hr."

	Water Refill	Start Time	Water Level Reading (inches)	Elaspse Time to Drop 1 inch (hr:min:sec)	Elapse Time To Drop 1 Inch (sec)	
	x	9:29 AM	3	-	-	
PRE-SOAK		9:41 AM	2	0:11:35.4	695.4	
		9:54 AM	1	0:24:51.7	1491.7	
		10:04 AM	0	0:34:07.8	2047.8	
Ħ	x	10:05 AM	3	-	-	
TEST #1		10:18 AM	2	0:12:46.5	766.5	
F						
#2	x	10:20 AM	3	-	-	
TEST		10:33 AM	2	0:12:56.2	776.2	
-	x	10:34 AM	3	-	-	
TEST #3		10:47 AM	2	0:12:58.0	778.0	
-		10:48 AM	3			
TEST #4	x	10:48 AM 11:02 AM	2	0:12:58.6	- 778.7	
Ë						
Ŧ	x	11:03 AM	3	-	-	
TEST #5		11:15 AM	2	0:12:59.2	779.2	
-						
TEST #6						
<u> </u>						
£#1						
TEST						
	Average Observed Field Intake					

	Average Observed Field Intake Rate (sec/inch)	779.2	
1	Average Observed Field Intake		
	Rate (inch/hr)	4.6	
1	Hydraulic Conductivity (inch/hr)	1.6	(see graph)


#### NOTES:


1 Test performed per Chapter 12, Subsection A5: Single Ring Infiltration Test of the November 2020 NJSBMP Manual

**King Arthur Court** 

North Brunswick, New Jersey

# FIELD SINGLE RING INFILTRATION TEST





When the observed field intake rate is greater than 60 in/hr, the hydraulic conductivity shall be reported as "greater than 20 in/hr." When the observed field intake rate is less than 1 in/hr, the hydraulic conductivity shall be reported as "less than 1 in/hr."

	Water Refill	Start Time	Water Level Reading (inches)	Elaspse Time to Drop 1 inch (hr:min:sec)	Elapse Time To Drop 1 Inch (sec)
0	х	10:14 AM	3	-	-
OA		10:22 AM	2	0:08:31.2	511.2
PRE-SOAK		10:34 AM	1	0:12:03.4	723.4
۵.		10:47 AM	0	0:12:40.5	760.5
Ť1	Х	10:50 AM	3	-	-
TEST #1		11:03 AM	2	0:13:13.7	793.7
Ħ					
#2	Х	11:10 AM	3	-	-
TEST		11:23 AM	2	0:13:14.5	794.5
	Х	11:26 AM	3	_	-
TEST #3	~~~~	11:40 AM	2	0:14:01.4	841.4
TES					
#4	х	11:41 AM	3	-	-
TEST		11:55 AM	2	0:14:02.3	842.3
<u> </u>	Х	12:09 PM	3		-
TEST #5	~	12:03 PM	2	0:14:02.4	842.4
TES					
9#					
TEST					
T#7					
TEST					
	•	•	•	•	
			0	rved Field Intake	841.4

Average Observed Field Intake Rate (sec/inch)	841.4	
Average Observed Field Intake Rate (inch/hr)	4.3	
Hydraulic Conductivity (inch/hr)	1.5	(see graph)

#### NOTES:

1 Test performed per Chapter 12, Subsection A5: Single Ring Infiltration Test of the November 2020 NJSBMP Manual

**King Arthur Court** 

North Brunswick, New Jersey

Water Refill

Х

PRE-SOAK

끂

TEST

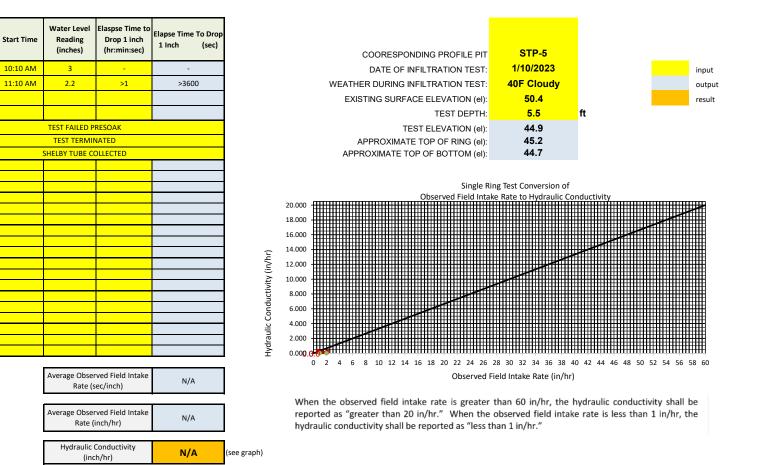
TEST #2

¥

TEST

#

TEST


TEST #5

TEST #6

4

TEST

# FIELD SINGLE RING INFILTRATION TEST



#### NOTES:

1 Test performed per Chapter 12, Subsection A5: Single Ring Infiltration Test of the November 2020 NJSBMP Manual

**King Arthur Court** 

North Brunswick, New Jersey

Х

PRE-SOAK

끂

TEST

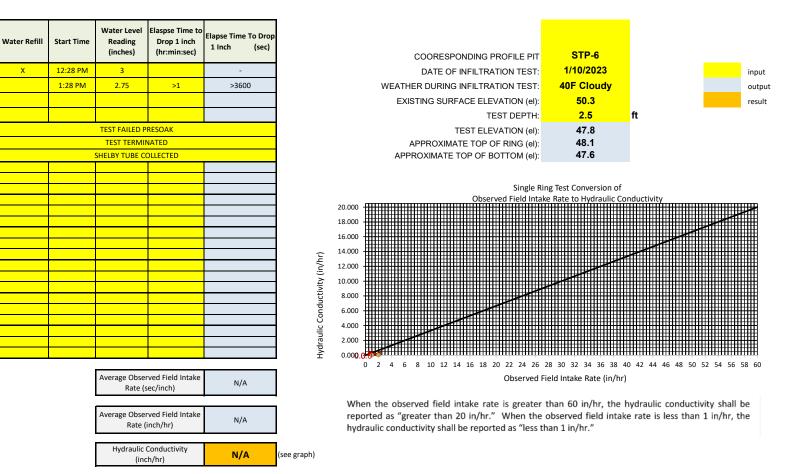
TEST #2

¥

TEST

#

TEST


TEST #5

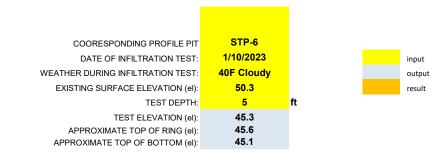
£6 TEST

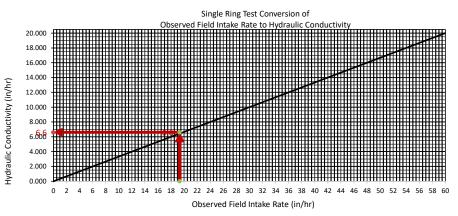
4

TEST

### FIELD SINGLE RING INFILTRATION TEST STP-6A




#### NOTES:


1 Test performed per Chapter 12, Subsection A5: Single Ring Infiltration Test of the November 2020 NJSBMP Manual

**King Arthur Court** 

North Brunswick, New Jersey

# FIELD SINGLE RING INFILTRATION TEST **STP-6B**





When the observed field intake rate is greater than 60 in/hr, the hydraulic conductivity shall be reported as "greater than 20 in/hr." When the observed field intake rate is less than 1 in/hr, the hydraulic conductivity shall be reported as "less than 1 in/hr."

	Water Refill	Start Time	Water Level Reading (inches)	Elaspse Time to Drop 1 inch (hr:min:sec)	Elapse Time To Drop 1 Inch (sec)
	х	9:35 AM	3	-	-
PRE-SOAK		9:39 AM	2	0:03:32.5	212.5
		9:42 AM	1	0:02:27.1	147.1
		9:45 AM	0	0:03:22.7	202.7
Ħ1	Х	9:53 AM	3	-	-
TEST #1		9:56 AM	2	0:02:50.9	170.9
F					
#2	Х	9:59 AM	3	-	-
TEST		10:03 AM	2	0:03:04.5	184.5
-	Х	10:03 AM	3	-	-
TEST #3		10:06 AM	2	0:03:06.3	186.3
-	X	10:08 AM	3		-
TEST #4	~	10:11 AM	2	0:03:07.8	187.8
Ë					
#5	Х	10:14 AM	3	-	-
TEST #5		10:17 AM	2	0:03:07.3	187.3
TEST #6					
<u> </u>					
T#7					
TEST					
			Average Obser	rved Field Intake	186 3

	Average Observed Field Intake Rate (sec/inch)	186.3	
ſ	Average Observed Field Intake Rate (inch/hr)	19.3	
ſ	Hydraulic Conductivity	6.6	(see graph)

#### NOTES:

1 Test performed per Chapter 12, Subsection A5: Single Ring Infiltration Test of the November 2020 NJSBMP Manual

**King Arthur Court** 

North Brunswick, New Jersey

Water Refill

Х

PRE-SOAK

끂

TEST

TEST #2

¥

TEST

#

TEST

TEST #5

TEST #6

4

TEST

# FIELD SINGLE RING INFILTRATION TEST



#### NOTES:

1 Test performed per Chapter 12, Subsection A5: Single Ring Infiltration Test of the November 2020 NJSBMP Manual

**King Arthur Court** 

North Brunswick, New Jersey

Water Refill

Х

PRE-SOAK

끂

TEST

TEST #2

¥

TEST

#

TEST

TEST #5

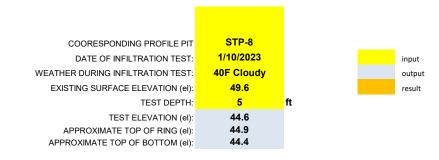
TEST #6

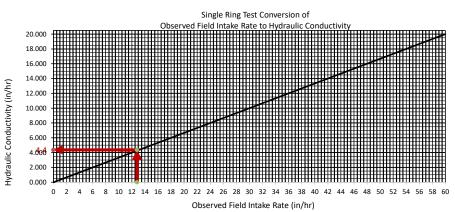
4

TEST

# FIELD SINGLE RING INFILTRATION TEST

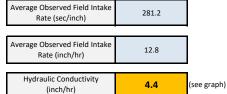



#### NOTES:


1 Test performed per Chapter 12, Subsection A5: Single Ring Infiltration Test of the November 2020 NJSBMP Manual

**King Arthur Court** 

North Brunswick, New Jersey


# FIELD SINGLE RING INFILTRATION TEST STP-8B





When the observed field intake rate is greater than 60 in/hr, the hydraulic conductivity shall be reported as "greater than 20 in/hr." When the observed field intake rate is less than 1 in/hr, the hydraulic conductivity shall be reported as "less than 1 in/hr."

	Water Refill	Start Time	Water Level Reading (inches)	Elaspse Time to Drop 1 inch (hr:min:sec)	Elapse Time To Drop 1 Inch (sec)
	Х	8:10 AM	3	-	-
PRE-SOAK		8:14 AM	2	0:03:34.9	214.9
RE-S		8:18 AM	1	0:04:23.3	263.3
۵.		8:22 AM	0	0:04:18.7	258.7
#1	Х	8:22 AM	3	-	-
TEST #1		8:27 AM	2	0:04:31.8	271.8
Ŧ					
¥	X	8:27 AM	3	-	-
TEST #2		8:32 AM	2	0:04:39.7	279.7
<u> </u>	х	8:32 AM	3		
Ŧ	×		2	0:04:41.2	-
TEST #3		8:37 AM	2	0:04:41.2	281.2
4	х	8:37 AM	3	-	-
TEST #4		8:42 AM	2	0:04:41.4	281.4
F					
Ŧ					
TEST #5					
- C					
TEST #6					
Ë					
£#.					
TEST					



#### NOTES:

1 Test performed per Chapter 12, Subsection A5: Single Ring Infiltration Test of the November 2020 NJSBMP Manual

## **APPENDIX D**

Laboratory Testing Results



Lab Log: 22-2147

### Letter of Transmittal

Date: 12-14-22Job No.: 869Attention:Kristen Shetler<br/>Langan Engineering & Environmental Services<br/>300 Kimball Drive, 4th Floor<br/>Parsippany, NJ 07054CC:Arthur RoeslerRe:Silver Line Drive, North Brunswick, NJ<br/>Proj. No. 100851001

Sample(s) ID: TP-1 ST-1 thru TP-12 S-3 (9 samples)

Dear Ms. Shetler,

Please find attached results for the samples referenced above. The following lab testing was performed:

- ASTM D422 Sieve & Hydrometer Analysis (9 tests)
- ASTM D2216 Moisture Content (9 tests)
- Tube Permeameter (3 tests)

Regards, RSA Geolab, LLC

Remarks: If you have any questions, please call 908-964-0786.

habine ch Signed:

Dr. Raza S. Ahmed President RSA Geolab, LLC

RSA's Geolab's Geotechnical Laboratory testing was performed and results reported in accordance with ASTM standards and accepted industry standards. No other representations or warranties either express or implied are given. RSA Geolab, LLC neither accepts responsibility for nor makes claim to the final use and purpose of the material tested.

RSA Geolab, LLC owns all rights, title and interest of the work product. This report is intended for client's sole and exclusive use and not for the benefit of others and may not be used or relied upon by others. These documents must be considered proprietary information and should not be reproduced without the written approval of RSA Geolab, LLC.



### MOISTURE CONTENT (ASTM D2216)

Project:	Silver Line Drive	Project #:	869
	North Brunswick, NJ		
Client:	Langan Eng. & Env. Svcs., Inc.	Date:	12-14-22
	Project#100851001		

	TP-1	TP-3	TP-4	TP-2	TP-11	TP-11
HOLE #/ SAMPLE #	ST-1	ST-1	ST-1	S-3	S-2	S-3
DEPTH	6'	5'	6'	4-5'	3-4'	5-6'
WET WGT. + TARE (gms.)	942.2	1090.2	1025.0	821.9	793.1	1084.1
	844.7	938.8	831.9	790.5	730.7	1056.2
DRY WGT. + TARE (gms.)	844.7	938.8	851.9	790.5	/30.7	1030.2
WGT. WATER (gms.)	97.5	151.4	193.1	31.4	62.4	27.9
TARE (gms.)	98.9	98.5	98.0	87.3	86.9	87.2
	745 9	940.2	722.0	702.2	(12.9	0(0,0
DRY WGT. (gms.) MOISTURE	745.8	840.3	733.9	703.2	643.8	969.0
CONTENT (%)	13.1	18.0	26.3	4.5	9.7	2.9
	TP-12	TP-12	TP-12			
HOLE #/ SAMPLE #	S-2	S-3 regular	S-3 clay			
	2.01		< <b>7</b> 1			
DEPTH	2-3'	6-7'	6-7'			
WET WGT. + TARE (gms.)	966.2	1046.5	895.3			
WET WOLT $+$ TAKE (glis.)	900.2	1040.5	095.5			
DRY WGT. + TARE (gms.)	871.8	1007.8	793.3			

102.0

87.8

705.5

14.5

EM\NY-GL\IGNITION\Langan SilverLnDr

Performed by: MF

94.4

87.0

784.8

12.0

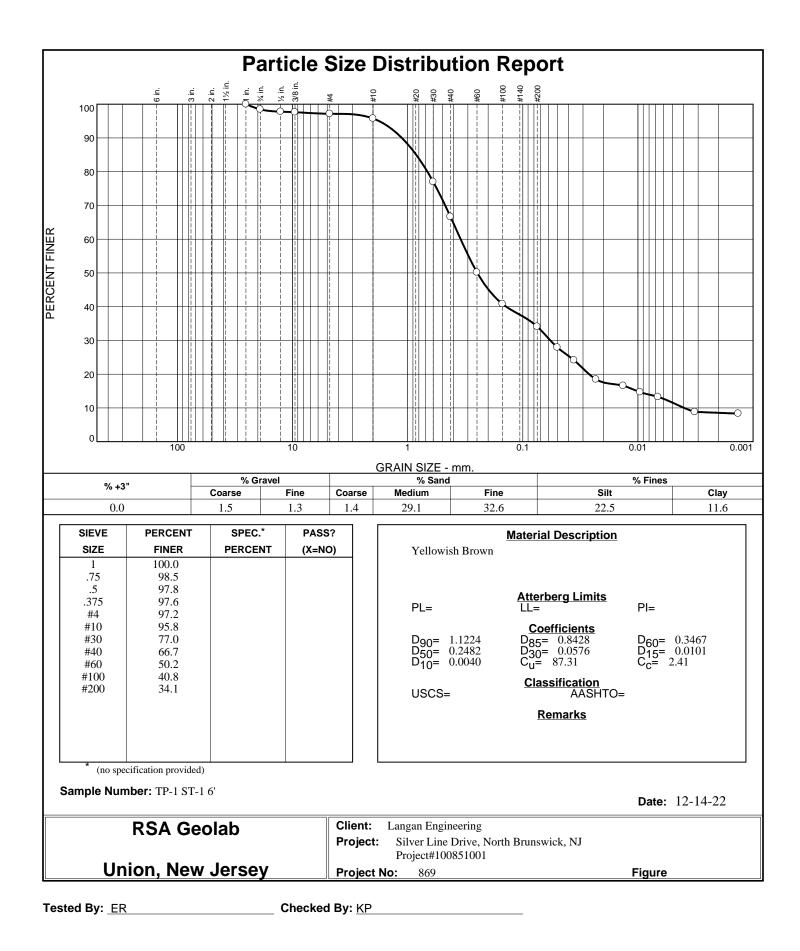
WGT. WATER (gms.)

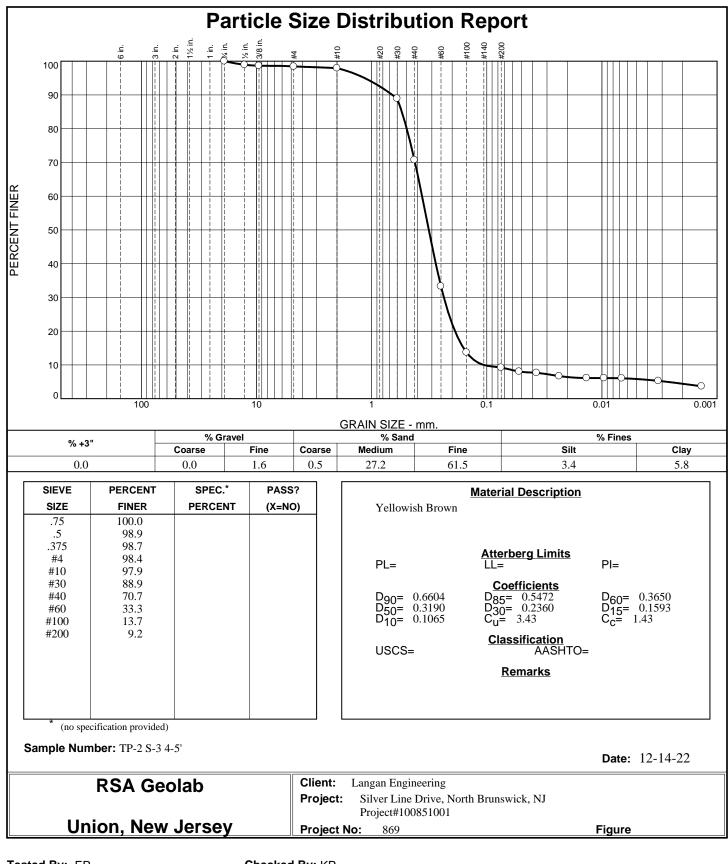
TARE (gms.)

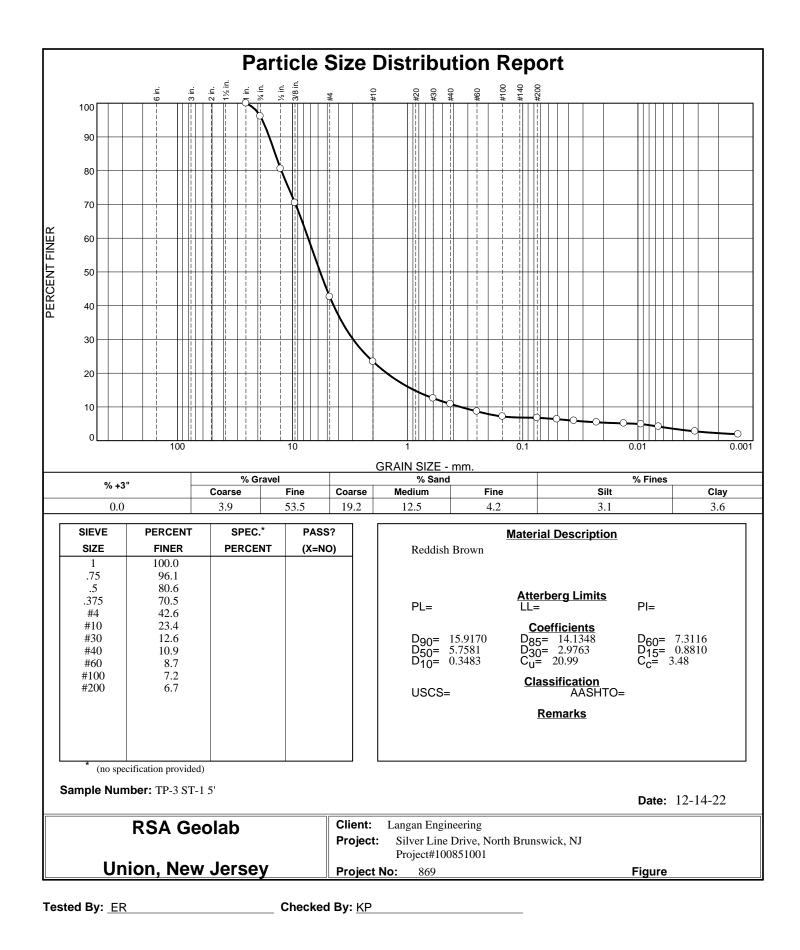
DRY WGT. (gms.)

CONTENT (%)

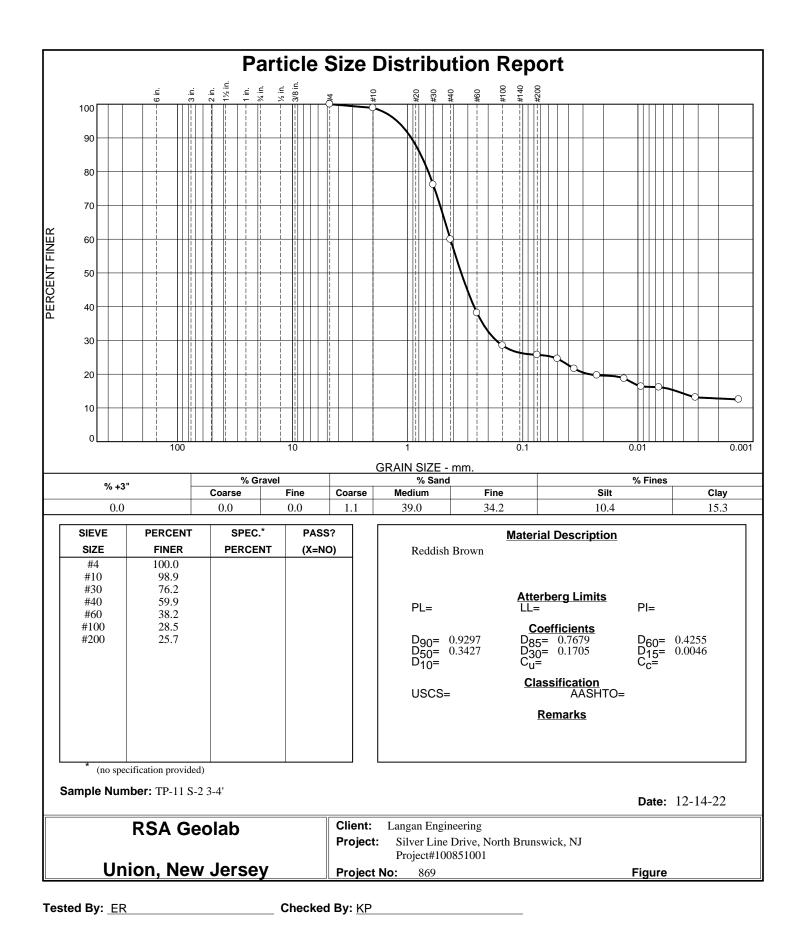
MOISTURE

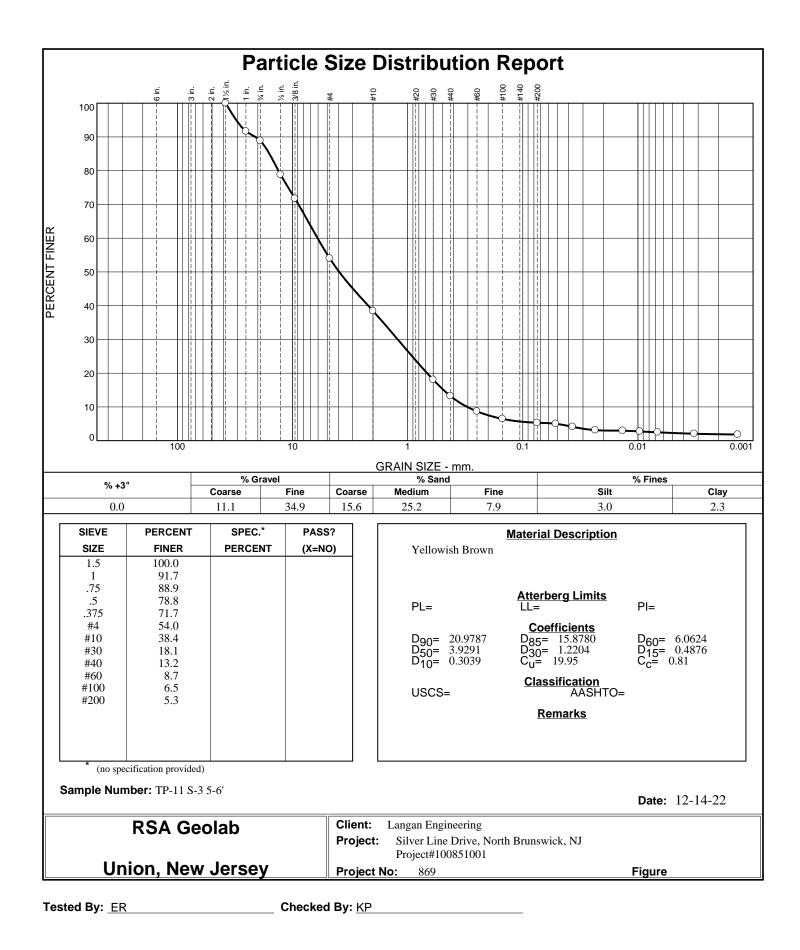

Entered by: KH

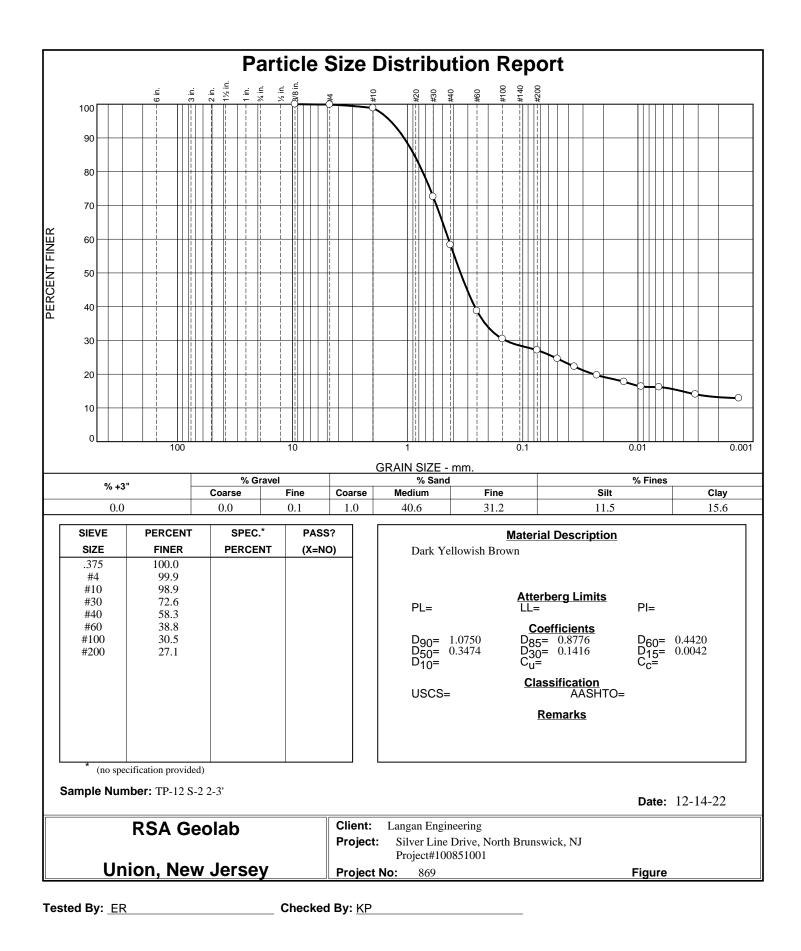

38.7


86.8

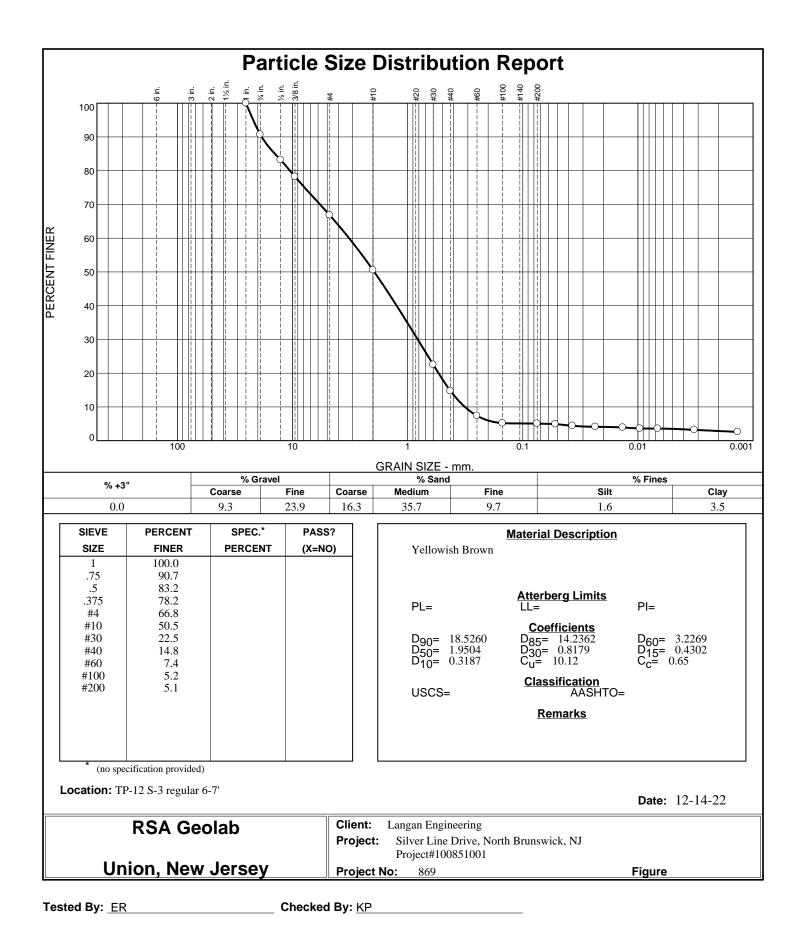
921.0


4.2


















### Shelby Tube Hydraulic Conductivity Test ASTM D2434 (For Calculations)

Client	: Langan Environmental			Job No.	: 869		
Project	: Silver Line Drive, North	n Brunsw	rick, NJ	Lab Log No.	: L#22-2147		
	Proj. No. 100851001						
Sample	: TP-1, ST-1, 6'			Date	:12-14-2022		
Average	Length of Soil Core	4.232	in.	Initial Weight o	f Soil Core	843.3	grams
				Final Weight of	Soil Core	860.1	grams
				Dry Weight of S	oil Core	745.8	grams
Diamete	r of Shelby Tube	2.875	in.	Initial Moisture	Content	13.07%	
Diamete	r of Standpipe	0.250	in.	Final Moisture	Content	15.33%	
				Wet Density, In	itial	116.93	PCF
				Wet Density, Fi	nal	119.27	PCF
				Dry Density		103.41	PCF

Trial No.	Initial Height	Final Height	Change in Water	Time Interval	Hydraulic Conductivity
That NO.	(inches)	(inches)	Level (inches)	(secs)	(cm/sec)
1	39.7	22.2	17.5	220.0	2.15E-04
2	38.2	23.4	14.8	205.0	1.94E-04
3	38.6	21.5	17.1	260.0	1.83E-04

Average Hydraulic Conductivity

1.97E-04 cm/sec 2.80E-01 in/hr

Remarks:

1. Test Conducted using Deaired Tap Water at Standard Temp. (72 deg F)

2. 100% Saturation Assumed

Tested By : MF/AO Checked By : KP



### Shelby Tube Hydraulic Conductivity Test ASTM D2434 (For Calculations)

Client	: Langan Environmental			Job No.	: 869		
Project	: Silver Line Drive, North	n Brunsw	ick, NJ	Lab Log No.	: L#22-2147		
	Proj. No. 100851001						
Sample	: TP-3, ST-1, 5'			Date	:12-14-2022		
Average	Length of Soil Core	4.432	in.	Initial Weight o	f Soil Core	991.7	grams
				Final Weight of	Soil Core	1006.2	grams
				Dry Weight of S	oil Core	840.3	grams
Diamete	r of Shelby Tube	2.875	in.	Initial Moisture	Content	18.02%	
Diamete	r of Standpipe	0.250	in.	Final Moisture	Content	19.74%	
				Wet Density, In	itial	131.31	PCF
				Wet Density, Fi	nal	133.23	PCF
				Dry Density		111.26	PCF

Trial No.	Initial Height	Final Height	Change in Water	Time Interval	Hydraulic Conductivity
That NO.	(inches)	(inches)	Level (inches)	(secs)	(cm/sec)
1	40.6	20.1	20.5	5.0	1.20E-02
2	40.4	19.8	20.6	5.0	1.21E-02
3	40.0	19.9	20.1	5.0	1.19E-02

Average Hydraulic Conductivity

1.20E-02 cm/sec 1.70E+01 in/hr

Remarks:

- 1. Test Conducted using Deaired Tap Water at Standard Temp. (72 deg F)
- 2. 100% Saturation Assumed; Contains Shale

Tested By : MF/AO Checked By : KP



### Shelby Tube Hydraulic Conductivity Test ASTM D2434 (For Calculations)

Client	: Langan Environmental			Job No.	: 869		
Project	: Silver Line Drive, North	n Brunsw	ick, NJ	Lab Log No.	: L#22-2147		
	Proj. No. 100851001						
Sample	: TP-4, ST-1, 6'			Date	:12-14-2022		
Average	Length of Soil Core	4.286	in.	Initial Weight o	f Soil Core	927.0	grams
				Final Weight of	Soil Core	942.5	grams
				Dry Weight of S	Soil Core	733.9	grams
Diamete	r of Shelby Tube	2.875	in.	Initial Moisture	Content	26.31%	
Diamete	r of Standpipe	0.250	in.	Final Moisture	Content	28.42%	
				Wet Density, In	itial	126.92	PCF
				Wet Density, Fi	nal	129.05	PCF
				Dry Density		100.49	PCF

Trial No.	Initial Height	Final Height	Change in Water	Time Interval	Hydraulic Conductivity
That NO.	(inches)	(inches)	Level (inches)	(secs)	(cm/sec)
1	40.2	21.3	18.9	20.0	2.61E-03
2	38.6	21.4	17.2	20.0	2.43E-03
3	38.1	20.8	17.3	20.0	2.49E-03

Average Hydraulic Conductivity

2.51E-03 cm/sec 3.56E+00 in/hr

Remarks:

- 1. Test Conducted using Deaired Tap Water at Standard Temp. (72 deg F)
- 2. 100% Saturation Assumed; Contains Shale

Tested By : MF/AO Checked By : KP



### Letter of Transmittal

Date: 1-31-23

Job No.: 869

Lab Log: 23-2266

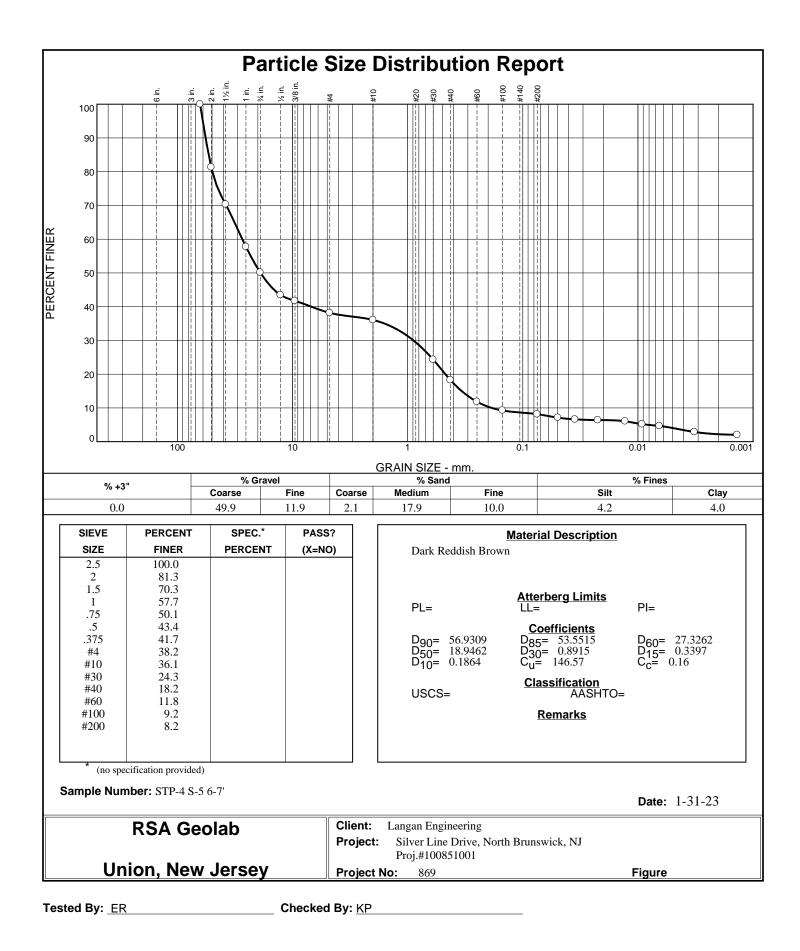
- Attention: Arthur Roesler Langan Engineering & Environmental Services 300 Kimball Drive, 4th Floor Parsippany, NJ 07054
- CC: Kristen Shetler
- Re: Silver Line Drive, North Brunswick, NJ Proj. No. 100851001
- Sample(s) ID: STP-4 S-5 thru STP-8 S-3 (7 samples)

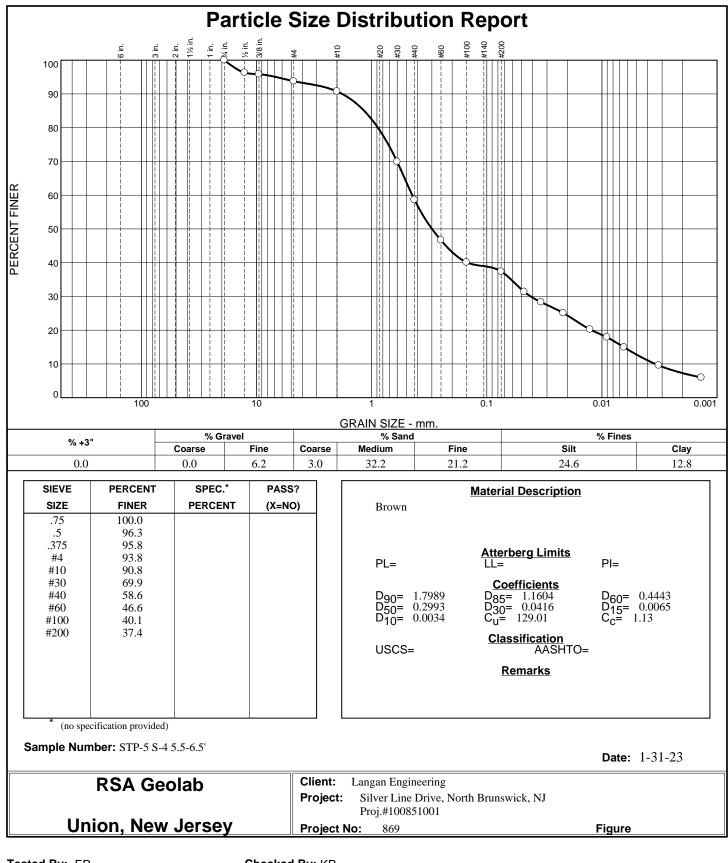
Dear Mr. Roesler,

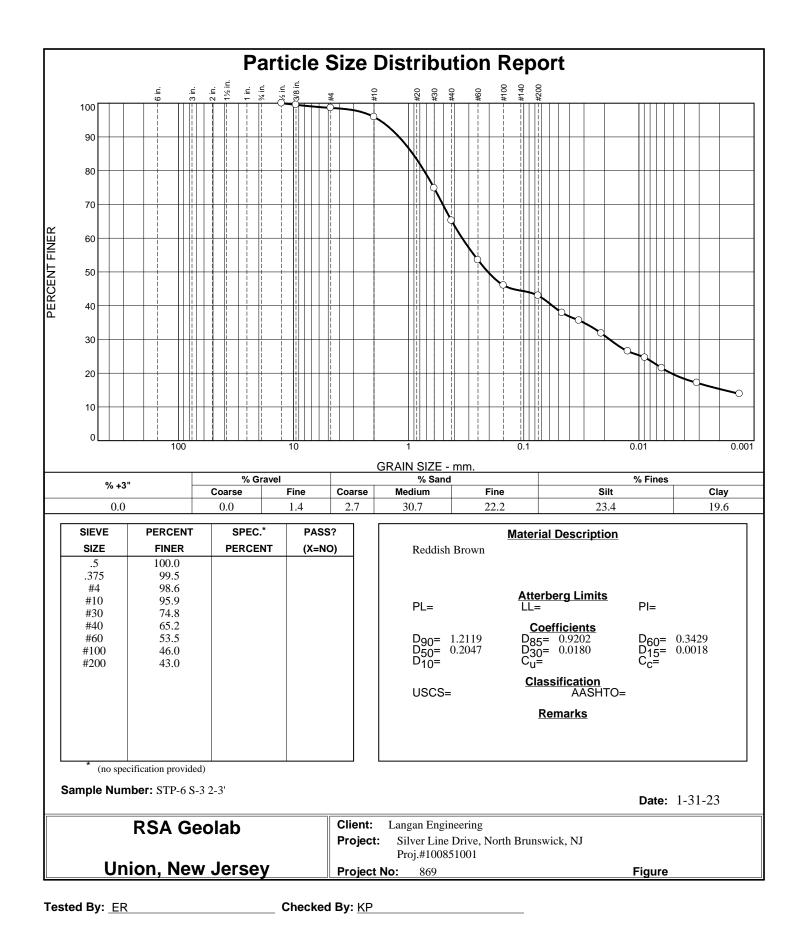
Please find attached results for the samples referenced above. The following lab testing was performed:

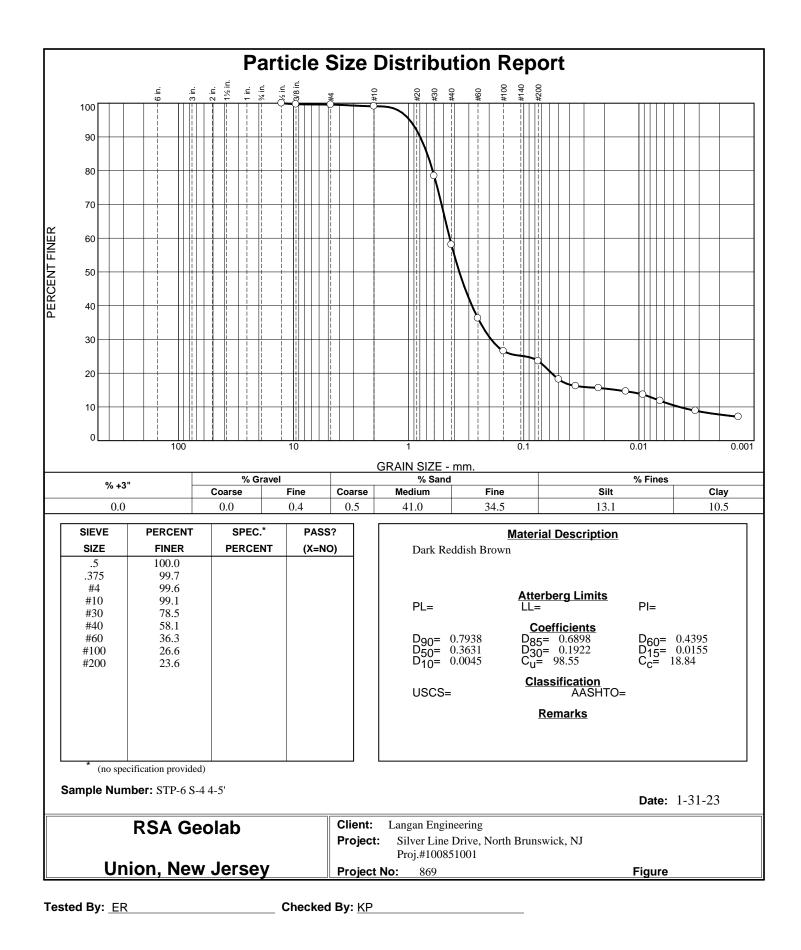
• ASTM D422 Sieve & Hydrometer Analysis

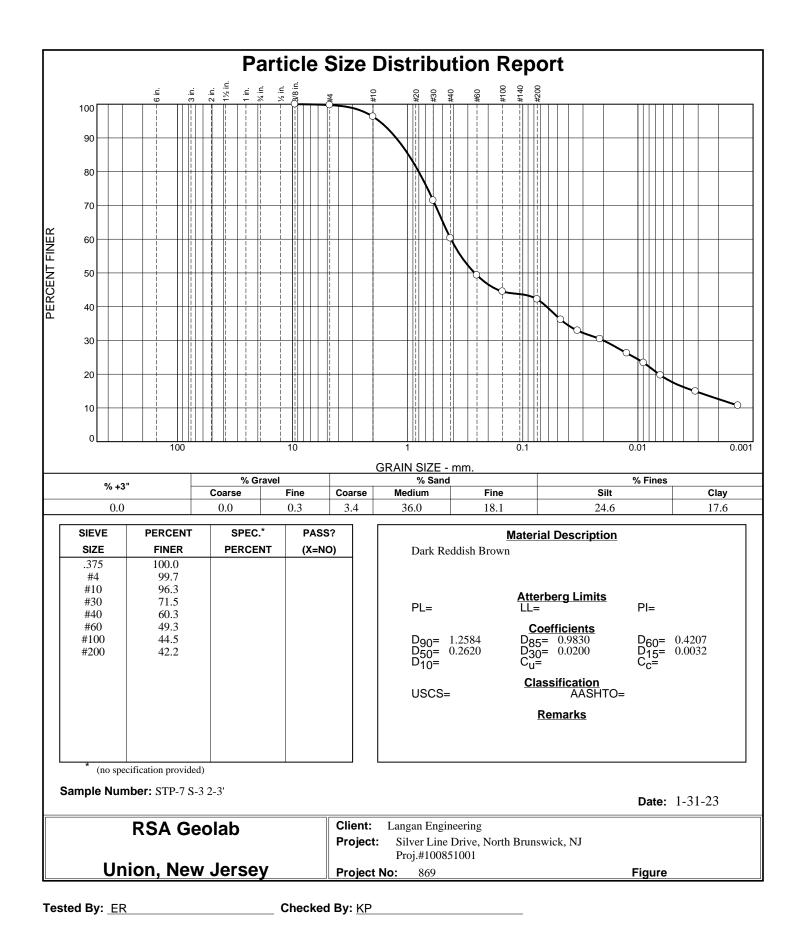
Regards, RSA Geolab, LLC


Remarks: If you have any questions, please call 908-964-0786.


re cl Alaha Signed:


Dr. Raza S. Ahmed President RSA Geolab, LLC


RSA's Geolab's Geotechnical Laboratory testing was performed and results reported in accordance with ASTM standards and accepted industry standards. No other representations or warranties either express or implied are given. RSA Geolab, LLC neither accepts responsibility for nor makes claim to the final use and purpose of the material tested.


RSA Geolab, LLC owns all rights, title and interest of the work product. This report is intended for client's sole and exclusive use and not for the benefit of others and may not be used or relied upon by others. These documents must be considered proprietary information and should not be reproduced without the written approval of RSA Geolab, LLC.

